Endothelial COX-2 induction by hypoxia liberates 6-keto-PGF, a potent epithelial Secretagogue

  • Sean P. Colgan
  • Cormac T. Taylor
  • Sailaja Narravula
  • Kristin Synnestvedt
  • Elizabeth D. Blume
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)


Mucosal epithelial cells provide a barrier that separates lumenal and vascular compartments. This monolayer of cells provides barrier function and serves as a conduit for vectorial ion movement, the transport event underlying mucosal hydration1. By secreting solutes and transporting fluid, epithelial cells are able to coordinate compositional changes of the luminal compartment. A number of stimuli, including hormones, neurotransmitters and cytokines have been shown to directly regulate epithelial function1-3


Okadaic Acid cAMP Response Element Binding cAMP Response Element Binding Protein Methyl Formate Mucosal Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Powell, D. W. 1987. Intestinal water and electrolyte transport.InPhysiology of the Gastrointestinal Tract. L. R. Johnson, editors. Raven Press, New York. 1267.Google Scholar
  2. 2.
    Lawson, L. D. and D. W. Powell. Bradykinin-stimulated eicosanoid synthesis and secretion of rabbiut ileal components.Am. J. Physiol. (Gastrointest. Liver. Physiol.);252:G783 (1987).Google Scholar
  3. 3.
    Breider, M. Endothelium and inflammation.JAVMA;203:300 (1993).PubMedGoogle Scholar
  4. 4.
    Pober, J. S. and R. S. Cotran. Overview: the role of endothelial cells in inflammation.Transplantation;50:537 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    Vane, J. R., E. E. Anggard and R. M. Botting. Regulatory functions of the vascular endothelium.N. Eng. J. Med.;323:27 (1990).CrossRefGoogle Scholar
  6. 6.
    Blume, E. D., C. T. Taylor, P. F. Lennon, G. L. Stahl and S. P. Colgan. Activated endothelial cells elicit paracrine induction of epithelial chloride secretion: 6-keto-PGFIais an epithelial secretagogue.J.Clin. Invest.;102:1161 (1998).PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Zünd, G., S. Uezono, G. L. Stahl, A. L. Dzus, F. X. McGowan, P. R. Hickey and S. P. Colgan. Hypoxia enhances endotoxin-stimulated induction of functional intercellular adhesion molecule-1 (ICAM-1).Am. J. Physiol. (Cell);273:C1571 (1997).Google Scholar
  8. 8.
    Zünd, G., D. P. Nelson, E. J. Neufeld, A. L. Dzus, J. Bischoff, J. E. Mayer and S. P. Colgan. Hypoxia enhances stimulus-dependent induction of E-selectin on aortic endothelial cells.Proc. Natl. Acad. Sci.(USA);93:7075 (1996).PubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dharmsathaphorn, K. and J. L. Madara. Established intestinal cell lines as model systems for electrolyte transport studies.Methods Enzymol.;192:354 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    Schmedtje, J. F., Y. S. Ji, W. L. Liu, R. N. DuBois and M. S. Runge. Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells.J. Biol. Chem.;272:601 (1997).PubMedCrossRefGoogle Scholar
  11. 11.
    Hinterleitner, T. A., J. I. Saada, H. M. Berschneider, P. D.W. and J. D. Valentich. IL-I stimulates intestinal myofibroblast COX gene expression and augments activation of Cl secretion in T84 cells.Am. J. Physiol.(Cell Physiol);27I:Cl262 (1996).Google Scholar
  12. 12.
    Shen, T. Y. and C. A. Winter. Chemical and biological studies on indomethacin, sulidac, and their analogs.Adv. Drug Res.;l2:90 (1977).PubMedGoogle Scholar
  13. 13.
    Futaki, N., S. Takahashi, M. Yokoyama, I. Arai, S. Higuchi and S. Otomo. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro.Prostaglandins;47:55 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    Falardeau, P., J. A. Oates and A. R. Brash. Quantitative analysis of two dinor urinary metabolites of prostaglandin I2.Anal. Biochem.;115:359 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    Brash, A. R., E. K. Jackson, C. A. Saggese, J. A. Lawson, J. A. Oates and G. A. Fitzgerald. Metabolic disposition of prostacyclin in humans.J. Pharmacol. Exp. Ther.;226:78 (1983).PubMedGoogle Scholar
  16. 16.
    Waxman, K. Shock: Ischemia, reperfusion and inflammation.New Horizons;4:153 (1996).Google Scholar
  17. 17.
    Cook, B. H., E. R. Wilson and A. E. Taylor. Intestinal fluid loss in hemorrhagic shock.Am. J. Physiol.;221:1494 (1971).PubMedGoogle Scholar
  18. 18.
    Maier, R. V. and E. M. Bulger. Endothelial changes after shock and injury.New Horizons;4:211 (1996).Google Scholar
  19. 19.
    Haglund, U. H., L. Hulten, C. Ahren and O. Lungren. Mucosal lesions in the human intestine in shock.Gut16:979 (1975).PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Dubois, R. N., S. B. Abramson, L. Crofford, R. A. Gupta, L. S. Simon, L. B. Van De Putte and P. E. Lipsky. Cyclooxygenase in biology and disease [see comments].Faseb J;12:1063 (1998).PubMedGoogle Scholar
  21. 21.
    Ji, Y. S., Q. Xu and J. Schmedtje Jr. Hypoxia induces high-mobility-group protein I(Y) and transcription of the cyclooxygenase-2 gene in human vascular endothelium.Circ Res;83:295 (1998).PubMedCrossRefGoogle Scholar
  22. 22.
    Chiarugi, V., L. Magnelli, A. Chiarugi and O. Gallo. Hypoxia induces pivotal tumor angiogenesis control factors including p53, vascular endothelial growth factor and the NFkappaB-dependent inducible nitric oxide synthase and cyclooxygenase-2 [letter].J Cancer Res Clin Oncol;125:525 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    Bonazzi, A., V. Mastyugin, P. A. Mieyal, M. W. Dunn and M. Laniado-Schwartzman. Regulation of cyclooxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium.J Biol Chem;275:2837 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    Miller, C., M. Zhang, Y. He, J. Zhao, J. P. Pelletier, J. Martel-Pelletier and J. A. Di Battista. Transcriptional induction of cyclooxygenase-2 gene by okadaic acid inhibition of phosphatase activity in human chondrocytes: co-stimulation of AP-1 and CRE nuclear binding proteins.J Cell Biochem;69:392 (1998).PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor, C. T., N. Fueki, A. Agah, R. M. Hershberg and S. P. Colgan. Critical role of cAMP response element binding protein expression in hypoxia-elicited induction of epithelial TNFa.J. Biol. Chem.;274:19447 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    Beitner-Johnson, D. and D. E. Millhorn. Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism.J Biol Chem;273:19834 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Sean P. Colgan
    • 1
  • Cormac T. Taylor
    • 1
  • Sailaja Narravula
    • 1
  • Kristin Synnestvedt
    • 1
  • Elizabeth D. Blume
    • 2
  1. 1.Center for Experimental Therapeutics and Reperfusion InjuryBrigham and Women’s HospitalBoston
  2. 2.Department of CardiologyChildren’s Hospital and Harvard Medical SchoolBoston

Personalised recommendations