Comparative Genomics of Bacteriophage Infecting Lactic Acid Bacteria

  • Elizabeth Stanley
  • Stephen Mc Grath
  • Gerald F. Fitzgerald
  • Douwe van Sinderen
Part of the The Lactic Acid Bacteria book series (LAAB, volume 3)

Abstract

Lactic acid bacteria (LAB) are Gram-positive, acid tolerant rods, or cocci, which produce lactic acid as the major end product of fermentation (Axelsson, 1993). This group comprises the genera Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, Pediococcus, and Carnobacterium, many of which play important roles in the food fermentation industry (McKay and Baldwin, 1990). LAB are used as starter cultures for the production of a wide range of fermented dairy foods (i.e., cheeses, yogurts, and fermented milks) as well as a diversity of other products such as fermented meats, sour dough bread, and silage (Mercenier et al, 1994). In addition to their capacity to rapidly acidify the fermentable food product, thereby inhibiting growth of pathogens and spoilage microorganisms, their metabolic activities are also responsible for the development of a range of flavor and texture characteristics of the food.

Keywords

Pneumonia Influenza Explosive Bacillus Oligomerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accolas, J. P., and Spillmann, H. (1979). The morphology of six bacteriophages of Streptococcus thermophilus. Journal of Applied Bacteriology 47: 135–144.CrossRefGoogle Scholar
  2. Ackermann, H.-W., and DuBow, M. S. (1987). Viruses of prokaryotes (Vol. I and II). Boca Raton, Florida: CRC Press, Inc.Google Scholar
  3. Ackermann, H.-W., Elzanowski, A., Fobo, G., and Stewart, G. (1995). Relationships of tailed phages: A survey of protein sequence identity. Archives of Virology 140: 1871–1884.CrossRefGoogle Scholar
  4. Alatossava, T., and Klaenhammer, T. R. (1991). Molecular characterization of three small isometric-headed bacteriophages which vary in their sensitivity to the lactococcal phage resistance plasmid pTR2030. Applied and Environmental Microbiology 57: 1346–1353.Google Scholar
  5. Alatossava, T., Forsman, P., and Ritzenthaler, P. (1995). Genome homology and superinfection immunity between temperate and virulent Lactobacillus delbrueckii bacteriophages. Archives Virology 140: 2261–2268.CrossRefGoogle Scholar
  6. Altermann, E., Klein, J. R., and Henrich, B. (1999). Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage øadh. General 236: 333–346.Google Scholar
  7. Alvarez, M. A., Herrero, M, and Suárez, J. E. (1998). The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in Gram-positive and Gram-negative bacteria. Virology 250: 185–193.CrossRefGoogle Scholar
  8. Alvarez, M. A., Rodriquez, A., and Suarez, J. E. (1999). Stable expression of the Lactobacillus casei bacteriophage A2 repressor blocks phage propagation during milk fermentation. Journal of Applied Microbiology 86: 812–816.CrossRefGoogle Scholar
  9. Arendt, E. K., and Hammes, W. P. (1992). Isolation and characterization of Leuconostoc oenos phages from German wines. Applied Microbiology and Biotechnology 37: 643–646.CrossRefGoogle Scholar
  10. Arendt, E. K., Daly, C., Fitzgerald, G. F., and Van de Guchte, M. (1994). Molecular characterisation of lactococcal bacteriophage Tuc2009 and identification and analysis of genes encoding lysin, a putative holin, and two structural proteins. Applied and Environmental Microbiology 60: 1875–1883.Google Scholar
  11. Arendt, E. K., Lonvaud, A., and Hammes, W. P. (1991). Lysogeny in Leuconostoc oenos. Journal of General Microbiology 137: 2135–2139.Google Scholar
  12. Auvray, F., Coddeville, M., Ritzenthaler, P., and Dupont, L. (1997). Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4. Journal of Bacteriology 179: 1837–1845.Google Scholar
  13. Axelsson, L. T. (1993). Lactic acid bacteria: Classification and physiology. In: S. Salminen and A. Wright (Eds.), Lactic acid bacteria (pp. 1–63). New York: Marcel Dekker, Inc.Google Scholar
  14. Batt, C. A., Erlandson, K., and Bsat, N. (1995). Design and implementation of a strategy to reduce bacteriophage infection of dairy starter cultures. International Dairy Journal 5: 949–962.CrossRefGoogle Scholar
  15. Benbadis, L., Faelen, M., Slos, P., Fazel, A., and Mercenier, A. (1990). Characterisation and comparison of virulent bacteriophages of Streptococcus thermophilus isolated from yoghurt. Biochimie 72: 855–862.CrossRefGoogle Scholar
  16. Bidnenko, E., Ehrlich, S. D., and Chopin, M. C. (1995). Phage Operon involved in sensitivity to Lactococcus lactis abortive infection mechanism AbiDl. Journal of Bacteriology 177: 3824–3829.Google Scholar
  17. Birkeland, N.-K., and Holo, H. (1993). Transduction of a plasmid carrying the cohesive end region from Lactococcus lactis bacteriophage øLC3. Applied and Environmental Microbiology 59: 1966–1968.Google Scholar
  18. Birkeland, N. K. (1994). Cloning, molecular characterization, and expression of the genes encoding the lytic functions of the lactococcal bacteriophage øLC3: A dual lysis system of modular design. Canadian Journal of Microbiology 40: 658–665.CrossRefGoogle Scholar
  19. Black, L. W. (1989). DNA packaging in dsDNA bacteriophages. Annual Review of Microbiology 43: 267–292.CrossRefGoogle Scholar
  20. Bläsi, U., and Young, R. (1996). Two beginnings for a single purpose: The dual start holins in the regulation of phage lysis. Molecular Microbiology 21: 675–682.CrossRefGoogle Scholar
  21. Blatny, J. M., Risoen, P. A., Lillehaug, D., Lunde, M., and Nes, I. F. (2001). Analysis of a regulator involved in the genetic switch between lysis and lysogeny of the temperate Lactococcus lactis phage phi LC3. Molecular Genetic Genomics 265: 189–197.CrossRefGoogle Scholar
  22. Boizet, B., Lahbibmansis, Y, Dupont, L., Ritzenthaler, P, and Mata, M. (1990). Cloning, expression and sequence analysis of an endolysin-encoding gene of Lactobacillus bulgaricus bacteriophage mvl. General 94: 61–67.Google Scholar
  23. Boizet, B., Mata, M., Mignot, O., and Ritzenthaler, P. (1992). Taxonomic characterization of Leuconostoc oenos bacteriophage. FEMS Microbiology Letters 90: 211–216.CrossRefGoogle Scholar
  24. Botstein, D. (1980). A theory of modular evolution for bacteriophages. Annuals of the New York Academy of Sciences 354: 484–491.CrossRefGoogle Scholar
  25. Boyce, J. D., Davison, B. E., and Hillier, A. J. (1995a). Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T. Applied and Environmental Microbiology 61: 4099–4104.Google Scholar
  26. Boyce, J. D., Davison, B. E., and Hillier, A. J. (1995b). Spontaneous deletion mutants of the Lactococcus lactis temperate bacteriophage BK5-T and localization of the BK5-T attP site. Applied and Environmental Microbiology 61: 4105–1109.Google Scholar
  27. Boyce, J. D., Davison, B. E., and Hillier, A. J. (1995c). Sequence analysis of the Lactococcus lactis temperate bacteriophage BK5-T and demonstration that the phage DNA has cohesive ends. Applied and Environmental Microbiology 61: 4089–4098.Google Scholar
  28. Bradley, D. E. (1967). A review: Ultrastructure of bacteriophage and bacteriocins. Bacteriology Review 31: 230–314.Google Scholar
  29. Braun, V, Hertwig, S., Neve, H., Geis, A., and Teuber, M. (1989). Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA-hybridisation, and protein profiles. Journal of General Microbiology 135: 2551–2560.Google Scholar
  30. Brondsted, L., and Hammer, K. (1999). Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Applied and Environmental Microbiology 65: 752–758.Google Scholar
  31. Brüssow, H., and Bruttin, A. (1995). Characterisation of a temperate Streptococcus thermophilus bacteriophage and its genetic relationship with lytic phages. Virology 212: 532–640.CrossRefGoogle Scholar
  32. Brüssow, H., Bruttin, A., Desiere, F., Lucchini, S., and Foley, S. (1998). Molecular ecology and evolution of Streptococcus thermophilus bacteriophages-a review. Virus Genes 16: 95–109.CrossRefGoogle Scholar
  33. Brüssow, H., Frémont, M., Bruttin, A., Sidoti, J., Constable, A., and Fryder, V (1994a). Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Applied and Environmental Microbiology 60: 4537–4543.Google Scholar
  34. Brüssow, H., Probst, A., Frémont, M., and Sidoti, J. (1994b). Distinct Streptococcus thermophilus bacteriophages share an extremely conserved DNA fragment. Virology 200: 854–857.CrossRefGoogle Scholar
  35. Brüssow, H. (2001). Phages of dairy bacteria. Annual Review of Microbiology 55: 283–303.CrossRefGoogle Scholar
  36. Brüssow, H., and Hendrix, R. W. (2002). Phage genomics: Small is beautiful. Cell 108: 13–16.CrossRefGoogle Scholar
  37. Brüssow, H., and Desiere, F. (2001). Comparative phage genomics and the evolution of Siphoviridae: Insights from dairy phages. Molecular Microbiology 39: 213–222.CrossRefGoogle Scholar
  38. Breüner, A., Brøndsted, L., and Hammer, K. (1999) Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901 -1. Journal of Bacteriology 181: 7291–7297.Google Scholar
  39. Bruttin, A., and Brüssow, H. (1996). Site-specific spontaneous deletions in three genome regions of a temperate Streptococcus thermophilus phage. Virology 219: 96–104.CrossRefGoogle Scholar
  40. Bruttin, A., Desiere, F, Lucchini, S., Foley, S., and Brüssow, H. (1997a). Characterisation of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage øSfi21. Virology 223: 136–148.CrossRefGoogle Scholar
  41. Bruttin, A., Foley, S., and Brüssow, H. (1997b). The site-specific integration system of the temperate Streptococcus thermophilus bacteriophage øSfi21. Virology 237: 148–158.CrossRefGoogle Scholar
  42. Budde-Niekiel, A., and Teuber, M. (1987). Electron microscopy of the adsorption of bacteriophages to lactic acid streptococci. Milchwissenschaft 42: 551–554.Google Scholar
  43. Callanan, M. J., O’Toole, P. W., Lubbers, M. W., and Polzin, K. M. (2001). Examination of lactococcal bacteriophage c2 DNA replication using two-dimensional agarose gel electrophoresis. Gene 278: 101–106.CrossRefGoogle Scholar
  44. Campbell, A. M. (1988). Phage evolution and speciation. In: R. Calendar (Ed.), The bacteriophages (pp. 1–14). New York: Plenum Press.CrossRefGoogle Scholar
  45. Campbell, A. M. (1992). Chromosomal insertion sites for phages and plasmids. Journal of Bacteriology 174: 7495–7499.Google Scholar
  46. Campbell, A. M. (1994). Comparative molecular biology of lambdoid phages. Annual Review of Microbiology 48: 193–222.CrossRefGoogle Scholar
  47. Carminati, D, and Giraffa, G. (1992). Evidence and characterization of temperate bacteriophage in Streptococcus salivarius subsp. thermophilus St18. Journal of Dairy Research 59: 71–79.CrossRefGoogle Scholar
  48. Casjens, S., and Hendrix, R. (1974). Comments on the arrangement of the morphogenetic genes of bacteriophage lambda. Journal of Molecular Biology 90: 20–23.CrossRefGoogle Scholar
  49. Casjens, S., Hatful, G., and Hendrix, R. (1992). Evolution of dsDNA tailed-bacteriophage genomes. Seminars in Virology 3: 383–397.Google Scholar
  50. Chai, S., Bravo, A., Lüder, G., Nedlin, A., Trauter, T. A., and Alonso, J. C. (1992). Molecular analysis of the Bacillus subtilis bacteriophage SPP1 region encompassing genes 1 to 6. Journal of Molecular Biology 224: 87–102.CrossRefGoogle Scholar
  51. Chandry, P. S., Moore, S. C, Boyce, J. D, Davidson, B. E., and Hillier, A. J. (1997). Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis bacteriophage sk1. Molecular Microbiology 26: 49-64.CrossRefGoogle Scholar
  52. Chandry, P. S., Moore, S. C, Davidson, B. E., and Hillier, A. J. (1994). Analysis of the cos region of the Lactococcus lactis bacteriophage sk1. Gene 138: 123–126.CrossRefGoogle Scholar
  53. Chopin, A., Bolotin, A., Sorokin, A., Ehrlich, S. D, and Chopin, M. C. (2001). Analysis of six prophages in Lactococcus lactis IL 1403: Different genetic structure of temperate and virulent phage populations. Nucleic Acids Research 29: 644–651.CrossRefGoogle Scholar
  54. Christiansen, B., Brondsted, L., Vogensen, F. K., and Hammer, K. (1996). A resolvase-like protein is required for the site-specific integration of the temperate lactococcal bacteriophage TP901-1. Journal of Bacteriology 178: 5164–5173.Google Scholar
  55. Christiansen, B., Johsen, M. G., Stenby, E., Vogensen, F K., and Hammer, K. (1994). Characterization of the lactococcal temperate phage TP901-1 and its site specific integration. Journal of Bacteriology 176: 1069–1076.Google Scholar
  56. Chung, D. K., Chung, S. K., and Batt, C. A. (1992). Antisense RNA directed against the major capsid protein of Lactococcus lactis subsp. cremoris bacteriophage 4-1 confers partial resistance to the host. Applied Microbiological Biotechnology 37: 79–83.Google Scholar
  57. Chung, D. K., Kim, J. K., and Batt, C. A. (1991). Cloning and nucleotide sequences of the major capsid protein from Lactococcus lactis spp. cremoris bacteriophage F4-1. Gene 101: 121–125.CrossRefGoogle Scholar
  58. Crow, V L., Coolbear, T., Gopal, P. K., Martley, F. G., McKay, L. L., and Riepe, H. (1995). The role of autolysis of lactic acid bacteria in the ripening of cheese. International Dairy Journal 5: 855–895.CrossRefGoogle Scholar
  59. Crutz-Le Coq, M., Cesselin, B., Commissaire, J., and Anba, J. (2002). Sequence analysis of the lactococcal bacteriophage bIL 170: Insights into structural proteins and HNH endonucleases in dairy phages. Microbiology 148: 985–1001.Google Scholar
  60. d’Hérelle, F. (1917). Sur un microbe invisible antagonistic des bacilles dysenteriques. Comptes Rendies de & ances de L’Académie des Sciences, Paris 165: 373–375.Google Scholar
  61. Daly, C, Fitzgerald, G. F., and Davis, R. (1996). Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance. Antonie van Leeuwenhoek 70: 99–110.CrossRefGoogle Scholar
  62. Davidson, B. E., Kordias, N., Dobos, M., and Hillier, A. J. (1996). Genomic organization of lactic acid bacteria. Antonie van Leeuwenhoek 70: 161–183.CrossRefGoogle Scholar
  63. Davidson, B. E., Powell, I. B., and Hillier, A. J. (1990). Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiology Review 87: 79–90.CrossRefGoogle Scholar
  64. De Ruyter, P. G. G. A., Kuipers, O. P., Meijer, W. C, and de Vos, W. M. (1997). Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nature Biotechnology 15: 976–979.CrossRefGoogle Scholar
  65. Deane, D. D, Nelson, F. E., Ryser, F. C, and Carr, P. H. (1953). Streptococcus thermophilus bacteriophage from Swiss cheese whey. Journal of Dairy Science 36: 185–191.CrossRefGoogle Scholar
  66. Desiere, F, Lucchini, S., and Brüssow, H. (1998). Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions. Virology 241: 345–356.CrossRefGoogle Scholar
  67. Desiere, F., Lucchini, S., and Brüssow, H. (1999). Comparative sequence analysis of the DNA packaging, head and tail morphogenesis modules in the temperate cos-site Streptococcus thermophilus bacteriophage Sfi21. Virology 260: 244–253.CrossRefGoogle Scholar
  68. Desiere, F., Lucchini, S., Bruttin, A., Zwahlen, M. C, and Brüssow, H. (1997). A highly conserved DNA replication module from Streptococcus thermophilus phages is similar in sequence and topology to a module from Lactococcus lactis phages. Virology 234: 372–382.CrossRefGoogle Scholar
  69. Desiere, F, Lucchini, S., Canchaya, C, Ventura, M., and Brüssow, H. (2000). Comparative genomics of phages and prophages in lactic acid bacteria. Antoine van Leeuwenhoek 82: 73–91.CrossRefGoogle Scholar
  70. Desiere, F., Mahanivong, C., Hillier, A. J., Chandry, P. S., Davidson, B. E., and Brüssow, H. (2001a). Comparative genomics of lactococcal phages: Insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Virology 283: 240–252.CrossRefGoogle Scholar
  71. Desiere, F., McShan, W. M., van Sinderen, D., Ferretti, J. J., and Brüssow, H. (2001b). Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic Streptococci: Evolutionary implications for prophage-host interactions. Virology 288: 325–341.CrossRefGoogle Scholar
  72. Desiere, F., Pridmore, R. D., and Brüssow, H. (2000). Comparative genomics of the late gene cluster from Lactobacillus phages. Virology 275: 294–305.CrossRefGoogle Scholar
  73. Días, E., Munthali, M., Lünsdorf, H., Höltje, J. V, and Timmis, K. N. (1996). The two step lysis system of pneumococcal bacteriophage Ej-1 is functional in Gram-negative bacteria: triggering of the major pneumococcal autolysin in E. coli. Molecular Microbiology 19: 667–681.CrossRefGoogle Scholar
  74. Díaz, E., López, R., and García, J. L. (1992). EJ-1, a temperate bacteriophage of Streptococcus pneumoniae with a Myoviridae morphotype. Journal of Bacteriology 174: 5516–5525.Google Scholar
  75. Dicks, L. M. T., Dellaglio, F, and Collins, M. D. (1995). Proposal to reclassify Leuconostoc oenos as Oenococcus oeni. International Journal of Systematic Bacteriology 45: 375–397.CrossRefGoogle Scholar
  76. Djordjevic, G. M., and Klaenhammer, T. R. (1997). Bacteriophage-triggered defence systems: Phage adaptation and design improvements. Applied and Environmental Microbiology 63: 4370–4376.Google Scholar
  77. Djordjevic, G. M., O’Sullivan, D. J., Walker, S. A., Conkling, M. A., and Klaenhammer, T. R. (1997). A triggered-suicide system designed as a defence against bacteriophage. Journal of Bacteriology 179: 6741–6748.Google Scholar
  78. Dube, P., Tavares, P., Lurz, R., and van Heel, M. (1993). The portal protein of bacteriophage SPP1: A DNA pump with 13-fold symmetry. EMBO Journal 12: 1303–1309.Google Scholar
  79. Dupont, L., Boizet-Bonhoure, B., Coddeville, M., Auvray, F, and Ritzenthaler, P. (1995). Characterisation of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. Journal of Bacteriology 177: 586–595.Google Scholar
  80. Duplessis, M., and Moineau, S. (2001). Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Molecular Microbiology 41: 325–336.CrossRefGoogle Scholar
  81. Engel, G., Altermann, E., Klein, J. R., and Henrich, B. (1998). Structure of a genome region of the Lactobacillus gasseri temperate phage øadh covering a repressor gene and cognate promoters. Gene 210: 61–70.CrossRefGoogle Scholar
  82. Fayard, B., Haeflinger, M., and Accolas, J. R (1993). Interaction of temperate bacteriophages of Streptococcus salivarius subsp. thermophilus with lysogenic indicators affect phage DNA restriction patterns and host ranges. Journal of Dairy Science 60: 385–399.Google Scholar
  83. Foley, S., Lucchini, S., Zwahlen, M.-C., Sidoti, J., and Brüssow, H. (1998). A short non-coding viral DNA element showing characteristics of a replication origin confers bacteriophage resistance to Streptococcus thermophilus. Virology 250: 377–387.CrossRefGoogle Scholar
  84. Foley, S., Bruttin, A., and Brüssow, H. (2000). Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages. Journal of Virology 74: 611–618.CrossRefGoogle Scholar
  85. Forde, A., and Fitzgerald, G. F. (1999). Bacteriophage defence systems in lactic acid bacteria. In: W. N. Konings, O. R Kuipers, and J. H. J. Huisin’tveld (Eds.), Proceedings of the sixth symposium on Lactic acid bacteria. Veldhoven, The Netherlands: Kluwer Academic Publishers.Google Scholar
  86. Forsman, P. (1993). Characterization of a prolate-headed bacteriophage of Lactobacillus delbrueckii subsp. lactis and its DNA homology with isometric-headed phages. Archives Virology 132: 321–330.CrossRefGoogle Scholar
  87. Forsman, P., and Alatossava, T. (1991). Genetic variation of Lactobacillus deldrueckii subsp. lactis bacteriophage isolated from cheese processing plants in Finland. Applied and Environmental Microbiology 57: 1805–1812.Google Scholar
  88. Fremaux, C., De Antoni, G. L., Raya, R. R., and Klaenhammer, T. (1993). Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate bacteriophage øadh. Gene 126: 61–66.CrossRefGoogle Scholar
  89. Fuller, R. S., Funnell, B. E., and Kornberg, A. (1984). The DnaA protein complex with E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38: 889-900.CrossRefGoogle Scholar
  90. Furth, M. E., and Wickner, S. H. (1983). In: R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg (Eds.), Lambdall (pp. 145–173). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  91. García, P., Alonso, J. C, and Suárez, J. E. (1997). Molecular analysis of the cos region of the Lactobacillus casei bacteriophage A2. Gene product 3, gp3 specifically binds to its downstream cos region. Molecular Microbiology 23: 505–514.CrossRefGoogle Scholar
  92. García, P., García, J. L., García, E., Sánchez-Puelles, J. M., and López, R. (1990). Modular organisation of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86: 81–88.CrossRefGoogle Scholar
  93. García, P., Ladero, V., Alonso, J. C, and Suárez, J. E. (1999). Cooperative interaction of CI protein regulates lysogeny of Lactobacillus casei by bacteriophage A2. Journal of Virology 73: 3920–3929.Google Scholar
  94. Garvey, P., van Sinderen, D., Twomey, D. P., Hill, C, and Fitzgerald, G. F. (1995). Molecular genetics of bacteriophage and natural phage defence systems in the genus Lactococcus. International Dairy Journal 5: 905–947.CrossRefGoogle Scholar
  95. Gasson, M. J. (1996). Lytic systems in lactic acid bacteria and their bacteriophages. Antonie van Leeuwenhoek 10: 147–159.CrossRefGoogle Scholar
  96. Geis, A. (1992). Cloning and DNA sequence analysis of a lysin gene of lactococcal bacteriophage P001 In: Annual report 1991 (p. B94). Kiel, Germany: Federal Dairy Research Centre.Google Scholar
  97. Gindreau, E., and Lonvaud-Funel, A. (1999). Molecular analysis of the region encoding the lytic systems from Oenococcus oeni temperate bacteriophage ø10MC. FEMS Microbiology Letters 171: 231–238.Google Scholar
  98. Gindreau, E., Torlois, S., and Lonvaud-Funel, A. (1997). Identification and sequence analysis of the region encoding the site-specific integration system from Leuconostoc oenos (Œnococcus œni) temperate bacteriophage ø10MC. FEMS Microbiology Letters 147: 279–285.CrossRefGoogle Scholar
  99. Gottesman, M. E., and Weisberg, R. A. (1971). Prophage insertion and excision. In: A. D. Hershey (Ed.), The bacteriophage Lambda (pp. 113–138). Cold Spring Harbor, NY: Cold Spring Harbour Laboratory.Google Scholar
  100. Grainge, I., and Jayaram, M. (1999). The integrase family of recombinases: Organization and function of the active site. Molecular Microbiology 33: 449–456.CrossRefGoogle Scholar
  101. Graschopf, A., and Bläsi, U. (1999). Molecular function of the dual-start motif of the λ S holin. Molecular Microbiology 33: 569–582.CrossRefGoogle Scholar
  102. Guo, P., Grimes, S., and Anderson, D. (1986). A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage ø29. Proceding of the National Academy of Sciences, USA 83: 3505–3509.CrossRefGoogle Scholar
  103. Hamada, K., Fujisawa, H., and Minagawa, T. (1986). A defined in vitro system for packaging of bacteriophage T3 DNA. Virology 151: 119–123.CrossRefGoogle Scholar
  104. Hatfull, G. F., and Sarkis, G. J. (1993). DNA sequence, structure and gene expression of mycobacteriophage L5: A phage system for mycobacterial genetics. Molecular Microbiology 7: 395–405.CrossRefGoogle Scholar
  105. Hauser, M. A., and Scocca, J. J. (1990). Location of the host attachment site for phage HP1 within a cluster of Haemophilus influenza tRNA genes. Nucleic Acid Research 18: 5305.CrossRefGoogle Scholar
  106. Hayashida, M., Watanabe, K., Muramatsu, T., and Goto, M. A. (1987). Further characterization of PL-1 phage-associated N-acetylmuramidase of Lactobacillus casei. Journal of General Microbiology 133: 1343–1349.Google Scholar
  107. Henrich, B., Binishofer, B., and Bläsi, U. (1995). Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage øadh. Journal of Bacteriology 177: 723–732.Google Scholar
  108. Highton, P. J., Chang, Y., and Myers, R. (1990). Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Molecular Microbiology 4: 1329–1340.CrossRefGoogle Scholar
  109. Hill, C, Miller, L. A., and Klaenhammer, T. R. (1990). Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage resistance in Lactococcus lactis. Journal of Bacteriology 172: 6419–6426.Google Scholar
  110. Hill, C., Miller, L. A., and Klaenhammer, T. R. (1991). In vitro genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. Journal of Bacteriology 173: 4363–4370.Google Scholar
  111. Huggins, A. R., and Sandine, W. E. (1977). Incidence and properties of temperate bacteriophages induced from lactic streptococci. Applied and Environmental Microbiology 33: 184–191.Google Scholar
  112. Jarvis, A. W. (1984). DNA-DNA homology between streptococci and their temperate and lytic phage. Applied Environmental Microbiology 47: 1031–1038.Google Scholar
  113. Jarvis, A. W. (1989). Bacteriophages of lactic acid bacteria. Journal of Dairy Science 72: 3406–3428.CrossRefGoogle Scholar
  114. Jarvis, A. W., Fitzgerald, G. F, Mata, M., Mercenier, A., Neve, H., Powell, I. B., Ronda, C., Saxelin, M., and Teuber, M. (1991). Species and type phages of lactococcal bacteriophages. Intervirology 32: 2–9.Google Scholar
  115. Jarvis, A. W., Lubbers, M. W., Beresford, T. P., Ward, L. J., Waterfield, N. R., Collins, L. J., and Jarvis, B. D. (1995a). Molecular biology of lactococcal bacteriophage c2. Developments in Biological Standardization 85: 561–567.Google Scholar
  116. Jarvis, A. W., Lubbers, M. W., Waterfield, N. R., Collins, L. J., and Polzin, K. M. (1995b). Sequencing and analysis of the genome of Lactococcal phage c2. International Dairy Journal 5: 963–976.CrossRefGoogle Scholar
  117. Johnsen, M. G., Appel, K. F., Madsen, P. L., Vogensen, F. K., Hammer, K., and Arnau, J. (1996). A genomic region of the lactococcal temperate bacteriophage TP901-1 encoding major virion proteins. Virology 218: 306–315.CrossRefGoogle Scholar
  118. Johnsen, M. G., Neve, H., Vogensen, F. K., and Hammer, K. (1995). Virion positions and relationships of lactococcal temperate bacteriophage TP901-1 proteins. Virology 212: 595–606. Josephsen, J., and Neve, H. (1998). Bacteriophages and lactic acid bacteria. In: Seppo Sabminen and Atte Von Wright (Eds.), Lactic acid bacteria, microbiology and functional aspects (pp. 385–436). New York: Marcel Dekker, Inc.Google Scholar
  119. Kakikawa, M., Oki, M., Tadokoro, H., Nakamura, S., Taketo, A., and Kodaira, K.-I. (1996). Cloning and nucleotide sequence of the major capsid proteins of Lactobacillus bacteriophage øgle. Gene 175: 157–165.CrossRefGoogle Scholar
  120. Kakikawa, M., Oki, M., Watanabe, N., Yasukawa, H., Masamune, Y., Taketo, A., and Kodaira, K.-I. (1997). Characterization of the genes encoding integrative and excisive functions of Lactobacillus phage øgle: Cloning, sequence analysis, and expression in Escherichia coli Gene 185: 119–125.CrossRefGoogle Scholar
  121. Kakikawa, M., Watanabe, N., Funawatashi, T., Oki, M., Yasukawa, H., Taketo, A., and Kodaira, K.-I. (1998). Promoter/repressor system of Lactobacillus plantarum phage øgle: Characterization of the promoters pR49-pR-pL and overproduction of the Cro-like protein Cng in Escherichia coli. Gene 215: 371–379.CrossRefGoogle Scholar
  122. Kakikawa, M., Ohkubo, S., Sakate, T., Sayama, M., Taketo, A., and Kodaira, K. (2000a). Purification and DNA-binding properties of the cro-type regulatory repressor protein eng encoded by the Lactobacillus plantarum phage phi gle. Gene 249: 161–169.CrossRefGoogle Scholar
  123. Kakikawa, M., Ohkubo, S., Syama, M., Taketo, A., and Kodaira, K. I. (2000b). The genetic switch for the regulatory pathway of Lactobacillus plantarum phage gle: Characterization of the promoter P(L), the repressor gene cpg, and the cpg-encoded protein Cpg in Escherichia coli. Gene 242: 155–166.CrossRefGoogle Scholar
  124. Kiliç, A. O., Pavlova, S. I., Ma, W.-G., and Tao, L. (1996). Analysis of Lactobacillus phages and bacteriocins in American dairy products and characterisation of a phage isolated from yogurt. Applied and Environmental Microbiology 62: 2111–2116.Google Scholar
  125. Kim, S. G., and Batt, C. A. (1991a). Identification of a nucleotide sequence conserved in Lactococcus lactis bacteriophages. Gene 98: 95–100.CrossRefGoogle Scholar
  126. Kim, S. G., and Batt, C. A. (1991b). Molecular characterisation of a Lactococcus lactis bacteriophage F4-1. Food Microbiology 8: 15–26.CrossRefGoogle Scholar
  127. Kim, S. G., and Batt, C. A. (1991c). Antisense mRNA-mediated bacteriophage resistance in Lactococcus lactis. Applied and Environmental Microbiology 57: 1109–1113.Google Scholar
  128. Kim, S. G., Bor, Y.-C, and Batt, C. A. (1992). Bacteriophage resistance in Lactococcus lactis spp. lactis using antisense ribonucleic acid. Journal of Dairy Science 75: 1761–1767.CrossRefGoogle Scholar
  129. Kivi, S., Peltomaki, T., Luomala, K., and Sarimo, S. S. (1987). Some properties of Streptococcus thermophilus bacteriophages. Folia Microbiology 32: 106–106.CrossRefGoogle Scholar
  130. Klaenhammer, T. R., and Fitzgerald, G. F. (1994). Bacteriophages and bacteriophage resistance. In: M. J. Gasson and W. de Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 106–168). Glasgow: Blackie Academic and Professional.CrossRefGoogle Scholar
  131. Kodaira, K.-I., Oki, M., Kakikawa, M., Watanabe, N., Hirakawa, M., Yamada, K., and Taketo, A. (1997). Genome structure of the Lactobacillus temperate phage øgle: The whole genome sequence and the putative promoter repressor system. Gene 187: 45–53.CrossRefGoogle Scholar
  132. Kornberg, A., and Baker, T. A. (1992). In: DNA replication. New York: W. H. Freeman and Company.Google Scholar
  133. Krusch, U., Neve, H., Luschei, B., and Teuber, M. (1987). Characterisation of a virulent bacteriophage of Streptococcus salivarius subsp. thermophilus by host specificity and electron microscopy. Kiel Milchwirtsch Forschungsber 39: 155–167.Google Scholar
  134. Labrie, S., and Moineau, S. (2002). Complete genomic sequence of bacteriophage ul36: Demonstration of phage heterogeneity within the P335 quasi-species of lactococcal phages. Virology 296: 308–320.CrossRefGoogle Scholar
  135. Ladero, V, García, P., Bascarán, V., Herrero, M., Álvarez, M. A., and Suárez, J. E. (1998). Identification of the repressor-encoding gene of the Lactobacillus bacteriophage A2. Journal of Bacteriology 180: 3474–3476.Google Scholar
  136. Ladero, V., Garcia, P., Alonso, J. C., and Suarez, J. E. (1999). A2 cro, the lysogenic cycle repressor, specifically binds to the genetic switch region of Lactobacillus casei bacteriophage A2. Virology 262: 220–229.CrossRefGoogle Scholar
  137. Lahbib-Mansais, Y., Mata, M., and Ritzenthaler, P. (1988). Molecular taxonomy of Lactobacillus phages. Biochimie 70: 429–435.CrossRefGoogle Scholar
  138. Landy, A., and Ross, W. (1977). Viral integration and excision. Structure of the λ att sites. Science 197:1147–1160.CrossRefGoogle Scholar
  139. Larbi, D., Colurin, C., Rouselle, L., Decaris, B., and Simonet, J. M. (1990). Genetic and biological characterisation of nine Streptococcus salivarius subsp. thermophilus bacteriophages. Lait 70: 107–116.CrossRefGoogle Scholar
  140. Lautier, M., and Novel, G. (1987). DNA-DNA hybridization in lactic streptococcal temperate and virulent phages belonging to distinct groups. Journal of Industrial Microbiology 2: 151–158.CrossRefGoogle Scholar
  141. Le Marrec, C., van Sinderen, D., Walsh, L., Stanley, E., Vlegels, E., Moineau, S., Heinze, P., Fitzgerald, G., and Fayard, B. (1997). Streptococcus thermophilus bacteriophages can be divided into two distinct groups based on mode of packaging and structural protein composition. Applied and Environmental Microbiology 63: 3246–3253.Google Scholar
  142. Lillehaug, D., and Birkeland, N.-K. (1993). Characterization of genetic elements required for site-specific integration of the temperate lactococcal bacteriophage øLC3 and construction of integration-negative øLC3 mutants. Journal of Bacteriology 175: 1745–1755.Google Scholar
  143. Lillehaug, D., Lindqvist, B. H., and Birkeland, N. K. (1991). Characterization of øLC3, a Lactococcus lactis ssp. cremoris temperate bacteriophage with cohensive single-stranded ends. Applied and Environmental Microbiology 57: 3206–3211.Google Scholar
  144. Lillehaug, D., Nes, I. F., and Birkeland, N. K. (1997). A highly efficient and stable system for site-specific integration of genes and plasmids into the phage øLC3 attachment site (attB) of the Lactococcus lactis chromosome. Gene 188: 129–136.CrossRefGoogle Scholar
  145. Little, J. W. (1993). LexA cleavage and other self-processing reactions. Journal of Bacteriology 175: 4943–4950.Google Scholar
  146. Lubbers, M. W., Waterfield, N. R., Beresford, T. P. J., Le Page, R. W. J., and Jarvis, A. J. (1995). Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Applied and Environmental Microbiology 61: 4348–4356.Google Scholar
  147. Lucchini, S., Desiere, F., and Brüssow, H. (1998). The structural gene module in Streptococcus thermophilus bacteriophage øSfi1 1 shows a hierarchy of relatedness to Siphoviridae from a wide range of bacterial hosts. Virology 246: 63–73.CrossRefGoogle Scholar
  148. Lucchini, S., Desiere, F., and Brüssow, H. (1999a). The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: Whole genome comparison of cos-site phages øSfil9 and øSfi21. Virology 260: 232–243.CrossRefGoogle Scholar
  149. Lucchini, S., Desiere, F., and Brüssow, H. (1999b). Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. Journal of Virology 73: 8647–8656.Google Scholar
  150. Lucchini, S., Desiere, F, and Brüssow, H. (1999c). Similarly organized lysogeny modules in temperate Siphoviridae from low GC content Gram-positive bacteria. Virology 263: 427–435.CrossRefGoogle Scholar
  151. Madsen, P. L., and Hammer, K. (1998). Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region. Microbiology 144: 2203–2215.CrossRefGoogle Scholar
  152. Madsen, P. L., Johansen, A. H., Hammer, K., and Brøndsted, L. (1999). The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1. Journal of Bacteriology 181: 7430–7438.Google Scholar
  153. Madsen, S. M., Mills, D., Djordjevic, G., Israelsen, H., and Klaenhammer, T. R. (2001). Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis. Applied and Environmental Microbiology 67: 1128–1139.CrossRefGoogle Scholar
  154. Marians, K. J. (1992). Prokaryotic DNA replication. Annual Review of Biochemistry 61: 673–719.CrossRefGoogle Scholar
  155. Mata, M., and Ritzenthaler, P. (1988). Present state of lactic acid bacteria phage taxonomy. Biochimie 70: 395–399.CrossRefGoogle Scholar
  156. Mata, M., Trautwetter, A., Luthaud, G., and Ritzenthaler, P. (1986). Thirteen virulent and temperate bacteriophages of Lactobacillus bulgaricus and Lactobacillus lactis belong to a single DNA homology group. Applied and Environmental Microbiology 52: 812–818.Google Scholar
  157. Martín, A. C., López, R., and García P. (1996). Analysis of the complete nucleotide sequence and functional organisation of the genome of Streptococcus pneumonia bacteriophage cp-1. Journal of Virology 70: 3678–3687.Google Scholar
  158. Martín, M. C., Alonso, J. C., Suárez, J. E., and Alvarez, M. A. (2000). Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Applied and Environmental Microbiology 66: 2599–2604.CrossRefGoogle Scholar
  159. Matthews, K. (1992). DNA looping. Microbiology Review 56: 123–136.Google Scholar
  160. Matz, K., Schmandt, M., and Gussin, G. N. (1982). The rex gene of bacteriophage lambda is really two genes. Genetics 102: 319–327.Google Scholar
  161. McGrath, S., Seegers, J. F. M., Fitzgerald, G. F, and van Sinderen, D. (1999). Molecular characterisation of a phage-encoded resistance system in Lactococcus lactis. Applied and Environmental Microbiology 65: 1891–1899.Google Scholar
  162. McGrath, S., Fitzgerald, G. F., and van Sinderen, D. (2001). Improvement and optimization of two engineered phage resistance mechanisms in Lactococcus lactis. Applied and Environmental Microbiology 67: 608–616.CrossRefGoogle Scholar
  163. McGrath, S., Fitzgerald, G. F., and van Sinderen, D. (2002a). Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Molecular Microbiology 43: 509–520.CrossRefGoogle Scholar
  164. McGrath, S., van Sinderen, D., and Fitzgerald, G. F. (2002b). Bacteriophage-derived genetic tools for use in lactic acid bacteria. International Dairy Journal 12: 3–15.CrossRefGoogle Scholar
  165. McKay, L. L., and Baldwin, K. A. (1990). Applications for Biotechnology: Present and future improvements in lactic acid bacteria. FEMS Microbiology Review 87: 3–14.CrossRefGoogle Scholar
  166. McShan, W. M., Tang, Y. F., and Ferretti, J. J. (1997). Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Molecular Microbiology 23: 719–728.CrossRefGoogle Scholar
  167. Mercenier, A., Pouwels, P. H., and Chassy, B. M. (1994). Genetic engineering of lactobacilli, leuconostoc and Streptococcus thermophilus. In: M. J. Gasson and W. M. de Vos (Eds.), Genetic and biotechnology of lactic acid bacteria (pp. 252–293). Glasgow: Blackie Academic and Professional.CrossRefGoogle Scholar
  168. Mikkonen, M., and Alatossava, T. (1994). Characterization of the genome region encoding structural proteins of Lactobacillus delbrueckii subsp. lactis phage LL-H. Gene 151: 53–59.CrossRefGoogle Scholar
  169. Mikkonen, M., and Alatossava, T. (1995). A group I intron in the terminase gene of Lactobacillus delbrueckii subsp. lactis phage LL-H. Microbiology 141: 2183–2190.CrossRefGoogle Scholar
  170. Mikkonen, M., Dupont, L., Alatossava, T., and Ritzenthaler, P. (1996a). Defective site-specific integration elements are present in the genome of virulent bacteriophage LL-H of lactobacillus delbrueckii. Applied and Environmental Microbiology 62: 1847–1851.Google Scholar
  171. Mikkonen, M., Räisänen, L., and Alatossava, T. (1996b). The early region completes the nucleotide sequence of Lactobacillus delbrueckii subsp. lactis phage LL-H. Gene 175: 49–57.CrossRefGoogle Scholar
  172. Missich, R., Weise, F., Chai, S., Lurz, R., Pedré, X., and Alonso, J. C. (1997). The replisome organizer (G38P) of Bacillus subtilis bacteriophage SPP1 forms specialized nucleoprotein complexes with two discrete distant regions of the SPP1 genome. Journal of Molecular Biology 270: 50–64.CrossRefGoogle Scholar
  173. Moineau, S., Fortier, J., Ackermann, H. W., and Pandian, S. (1992). Characterization of lactococcal bacteriophages from Quebec cheese plants. Canadian Journal of Microbiology 38: 875–882.CrossRefGoogle Scholar
  174. Moineau, S., Pandian, S., and Klaenhammer, T. R. (1994). Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome. Applied and Environmental Microbiology 60: 1832–1841.Google Scholar
  175. Moscoso, M., and Suarez, J. E. (2000). Characterization of the DNA replication module of bacteriophage A2 and use of its origin of replication as a defense against infection during milk fermentation by Lactobacillus casei. Virology 273: 101–111.CrossRefGoogle Scholar
  176. Nakashima, Y., Ikeda, H., Kakita, Y., Miake, F., and Watanabe, K. (1994). Restriction map of the genomic DNA of Lactobacillus casei bacteriophage PL-1 and nucleotide sequence of its cohesive single-stranded ends. Journal of General Virology 75: 2537–2541.CrossRefGoogle Scholar
  177. Nauta, A., van de Burg, B., Karsens, H., Venema, G., and Kok, J. (1997). Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling. Nature Biotechnology 15: 980–983.CrossRefGoogle Scholar
  178. Nauta, A., van Sinderen, D., Karsens, H., Smit, E., Venema, G., and Kok, J. (1996). Inducible gene expression mediated by a repressor-operator system isolated from Lactococcus lactis bacteriophage rlt. Molecular Microbiology 19: 1331–1341.CrossRefGoogle Scholar
  179. Neve, H. (1996). Bacteriophage. In: T. M. Cogan and J. P. Accolas (Eds.), Dairy starter cultures (pp. 157–189). New York: VCH Publishers.Google Scholar
  180. Neve, H., Krusch, U., and Teuber, M. (1989). Classification of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus isolated from yoghurt and Swiss-type cheese. Applied Microbiology and Biotechnology 30: 624–629.CrossRefGoogle Scholar
  181. Neve, H., Zenz, K. I., Desiere, F., Koch, A., Heller, K. J., and Brüssow, H. (1998). Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and øSfi21: Implications for the modular theory of phage evolution. Virology 241: 61–72.CrossRefGoogle Scholar
  182. O’Sullivan, D. J., Hill, C., and Klaenhammer, T. R. (1993). Effect of increasing the copy number of bacteriophage origins of replication, in trans, on incoming-phage proliferation. Applied and Environmental Microbiology 59: 2449–2456.Google Scholar
  183. O’Sullivan, D. J., Walker, S. A., West, S. G., and Klaenhammer, T. R. (1996). Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology 14: 82–87.CrossRefGoogle Scholar
  184. Oki, M., Kakikawa, M., Yamada, K., Taketo, A., and Kodaira, K. I. (1996). Cloning, sequence analysis, and expression of the genes encoding lytic functions of bacteriophage øgle. Gene 176: 215–223.CrossRefGoogle Scholar
  185. Oram, J. D., and Reiter, B. (1965). Phage-associated lysins affecting group N and group D streptococci. Journal of General Microbiology 40: 57–70.Google Scholar
  186. Parreira, R., São-José, C., Isidro, A., Domingues, S., Vieira, G., and Santos, M. A. (1999). Gene organization in a central DNA fragment of Oenococcus oeni bacteriophage fOg44 encoding lytic, integrative and nonessential functions. Genetics 226: 83–93.Google Scholar
  187. Parreira, R., Valyasevi, R., Lerayer, A. L. S., Ehrlich, D. S., and Chopin, M. C. (1996). Gene organization and transcription of a late-expressed region of a Lactococcus lactis phage. Journal of Bacteriology 178: 6158–6165.Google Scholar
  188. Pedré, X., Weise, F., Chai, S., Lüder, G., and Alonso, J. C. (1994). Analysis of cis and trans acting elements required for the initiation of DNA replication in the Bacillus subtilis bacteriophage SPP1. Journal of Molecular Biology 236: 1324–1340.CrossRefGoogle Scholar
  189. Perrin, R., Billard, P., and Branlant, C. (1997). Comparative analysis of the genomic DNA terminal regions of the lactococcal bacteriophages from species c2. Research in Microbiology 148: 573–583.CrossRefGoogle Scholar
  190. Platteeuw, C., and de Vos, W. M. (1992). Location, characterisation and expression of the lytic enzyme-encoding gene, lytA, of Lactococcus lactis bacteriophage øUS3. Gene 118: 115–120.CrossRefGoogle Scholar
  191. Poblet-Icart, M., Bordons, A., and Lonvaud-Funal, A. (1998). Lysogeny of Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacteriophages. Current Microbiology 36: 365–369.CrossRefGoogle Scholar
  192. Prévots, F., Mata, M., and Ritzenthaler, P. (1990). Taxonomic differentiation of 101 lactococcal bacteriophages and characterization of bacteriophages with unusually large genomes. Applied and Environmental Microbiology 56: 2180–2185.Google Scholar
  193. Prévots, F., Relano, P., Mata, M., and Ritzenthaler, P. (1989). Close relationship of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus at both the protein and the DNA level. Journal of General Microbiology 135: 3337–3344.Google Scholar
  194. Proux, C., van Sinderen, D., Suarez, J., Garcia, P., Ladero, V., Fitzgerald, G. F., Desiere, F., and Brussow, H. (2002). The dilemma of phage taxonomy illustrated by comparative genomics of sfi21 -like Siphoviridae in lactic acid bacteria. Journal of Bacteriology 184: 6026–6036.CrossRefGoogle Scholar
  195. Ptashne, M. (1986). A genetic switch: Gene control and phage lambda. Palo Alto, USA: Blackwell Scientific Publications.Google Scholar
  196. Raya, R. R., Fremaux, C., de Antoni, G. L., and Klaenhammer, T. R. (1992). Site-specific integration of the temperate bacteriophage Φadh into the Lactobacillus gasseri chromosome and molecular characterization of the phage (attP) and bacterial (attB) attachment sites. Journal of Bacteriology 174: 5584–5592.Google Scholar
  197. Reinbold, G. W., Reddy, M. S., and Hammond, E. G. (1982). Ultrastructures of bacteriophages active against Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus lactis, and Lactobacillus helveticus. Journal of Food Protection 45: 119–124.Google Scholar
  198. Reiter, W. D., Palm, P., and Yeats, S. (1989). Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Research 17: 1907–1914.CrossRefGoogle Scholar
  199. Relano, P., Mata, M., Bonneau, M., and Ritzenthaler, P. (1987). Molecular characterisation and comparison of 38 virulent and temperate bacteriophages of Streptococcus lactis. Journal of General Microbiology 133: 3053–3063.Google Scholar
  200. Roa, V B., and Black, L. W. (1985). DNA packaging of bacteriophage T4 proheads in vitro: Evidence that prohead expansion is not coupled to DNA packaging. Journal of Molecular Biology 185: 565–578.CrossRefGoogle Scholar
  201. Rodgers, H. J., Perkins, H. R., and Ward, J. B. (1980). Microbial cell walls and membranes. London, UK: Chapman and Hall.CrossRefGoogle Scholar
  202. Sanford, J. C., and Johnston, S. A. (1985). The concept of parasite-derived resistance—Deriving resistance genes from the parasites own genome. Journal of Bacteriology 113: 395–405.Google Scholar
  203. Schleif, R. F. (1992). DNA looping. Annual Review of Biochemistry 61: 199–223.CrossRefGoogle Scholar
  204. Schouler, C., Bouet, C., Ritzenthaler, P., Drouet, X., and Mata, M. (1992). Characterization of Lactococcus lactis phage antigens. Applied and Environmental Microbiology 59: 2470–2484.Google Scholar
  205. Schouler, C., Ehrlich, D. S., and Chopin, M. C. (1994). Sequence and organisation of the lactococcal prolate headed bIL67 phage genome. Microbiology 140: 3061-3069.CrossRefGoogle Scholar
  206. Séchaud, L., Cluzel, P.-J., Rousseau, M., Baumgartner, A., and Accolas, J. P. (1988). Bacteriophages of lactobacilli. Biochimie 70: 401–410.CrossRefGoogle Scholar
  207. Séchaud, L., Rousseau, M., Fayard, B., Callegari, M. L., Quénée, P., and Accolas, J. P. (1992). Comparative study of 35 bacteriophages of Lactobacillus helveticus: Morphology and host range. Applied Environmental Microbiology 58: 1011–1018.Google Scholar
  208. Sharples, Gary J., Bolt, Edward L., Lloyd, and Robert, G. (2002). RusA proteins from the extreme thermophile Aquifex aeolicus and lactococcal phage rlt resolve Holliday junctions. Molecular Microbiology 44: 549–559.CrossRefGoogle Scholar
  209. Shearman, C., Jury, K., and Gasson, M. J. (1994). Controlled expression and structural organisation of a Lactococcus lactis bacteriophage lysin encoded by two overlapping genes. Applied and Environmental Microbiology 60: 3063–3073.Google Scholar
  210. Shearman, C., Underwood, H., Jury, K., and Gasson, M. (1989). Cloning and DNA sequence analysis of a Lactococcus bacteriophage lysin gene. Molecular Genetics and Genomics 218: 214–221.Google Scholar
  211. Shearman, C. A., Jury, K., and Gasson, M. J. (1992). Autolytic Lactococcus lactis expressing a lactococcal bacteriophage lysin gene. Biotechnology 10: 196–199.CrossRefGoogle Scholar
  212. Sheehan, M., García, J. L., López, R., and García, P. (1996). Analysis of the catalytic domain of the lysin of the lactococcal bacteriophage Tuc2009 by chimeric gene assembling. FEMS Microbiology Letters 140: 23–28.CrossRefGoogle Scholar
  213. Sheehan, M. M., Stanley, E., Fitzgerald, G. E, and van Sinderen, D. (1999). Identification and characterisation of a lysis module present in a large proportion of bacteriophages infecting Stretococcus thermophilus. Applied and Environmental Microbiology 65: 569–577.Google Scholar
  214. Smaczny, T., and Kramer, J. (1984). Acidification disturbance in manufacture of yoghurt. Bioghurt and Biogarde caused by bacteriocins and bacteriophages of Streptococcus thermophilus. 2. Distribution and characterization of bacteriophages. Deutsche Molkerei-Zeitung 105: 614–618.Google Scholar
  215. Stanley, E., Fitzgerald, G. F., Le Marrec, C., Fayard, B., and van Sinderen, D. (1997). Sequence analysis and characterisation of øO1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. Microbiology 143: 3417–3429.CrossRefGoogle Scholar
  216. Stanley, E., Walsh, L., van der Zwet, A., Fitzgerald, G. F., and van Sinderen, D. (2000) Identification of four loci isolated from two Streptococcus thermophilus phage genomes responsible for mediating bacteriophage resistance. FEMS Microbiology Letters 182: 271–277.CrossRefGoogle Scholar
  217. Stanley, E., Walsh, L., Fitzgerald, G. F., and van Sinderen, D. Sequence analysis of ø7201, a lytic cos-site-containing bacteriophage infecting Streptococcus thermophilus. Unpublished results.Google Scholar
  218. Stoll, S. M., Ginsburg, D. S., and Calos, M. P. (2002). Phage TP901-1 site-specific integrase functions in human cells. Journal of Bacteriology 184: 3657–3663.CrossRefGoogle Scholar
  219. Sturino, J. M., and Klaenhammer, T. R. (2002). Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Applied and Environmental Microbiology 68: 588–596.CrossRefGoogle Scholar
  220. Susskind, M. M., Botstein, D., and Wright, A. (1971). Superinfection exclusion by prophage P22 in lysogens of Salmonella typhimurium II. Genetic evidence for two exclusion systems. Virology 45: 638–652.CrossRefGoogle Scholar
  221. Sutherland, M., van Vuuren, H. J. J., and Howe, M. M. (1994). Cloning, sequence and in vitro transcription/translation analysis of a 3.2-kb EcoRI-HindIII fragment of Leuconostoc oenos bacteriophage L10. Gene 148: 125–129.CrossRefGoogle Scholar
  222. Tohyama, K., Sakurai, T., Arai, H., and Oda, A. (1972). Studies on temperate phages of Lactobacillus salivarius. I. Morphological, biological, and serological properties of newly isolated temperate phages of Lactobacillus salivarius. Japaneses Journal of Microbiology 16: 385–395.Google Scholar
  223. Trautwetter, A., Ritzenthaler, P., Alatossava, T, and Mata-Gilsinger, M. (1986). Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL-H. Journal of Virology 59: 551–55.Google Scholar
  224. Tremblay, D. M., and Moineau, S. (1999). Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus. Virology 255: 63–76.CrossRefGoogle Scholar
  225. Twort, F. W. (1915). An investigation on the nature of ultra-microscopic viruses. Lancet 2: 1241–1243.CrossRefGoogle Scholar
  226. Van de Guchte, M., Daly, C., Fitzgerald, G. F., and Arendt, E. K. (1994a). Identification of the putative repressor-encoding gene cI of the temperate lactococcal bacteriophage Tuc2009. Gene 144: 93–95.CrossRefGoogle Scholar
  227. Van de Guchte, M., Daly, C., Fitzgerald, G. F., and Arendt, E. K. (1994b). Identification of int and attP on the genome of the Lactococcal bacteriophage Tuc2009 and their use for site-specific plasmid integration in the chromosome of Tuc2009-resistant Lactococcus lactis MG1363. Applied and Environmental Microbiology 60: 2324–2329.Google Scholar
  228. van Sinderen, D., Creavan, M., Daly, C., Van de Guchte, M., Arendt, E. K., and Fitzgerald, G. F. (1999). Sequence analysis of the temperate lactococcal phage Tuc2009. Unpublished results.Google Scholar
  229. van Sinderen, D., Karsens, H., Kok, J., Terpstra, P., Ruiters, M. H., Venema, G., and Nauta, A. (1996). Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage rlt. Molecular Microbiology 19: 1343–1355.CrossRefGoogle Scholar
  230. Vasala, A., Dupont, L., Baumann, M., Ritzenthaler, P., and Alatossava, T. (1993). Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages. Journal of Virology 67: 3061–3068.Google Scholar
  231. Vasala, A., Välkkilä, M., Caldentey, J., and Alatossava, T. (1995). Genetic and biochemical characterisation of the Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H lysin. Applied and Environmental Microbiology 61:4004–4011.Google Scholar
  232. Ventura, M., Foley, S., Bruttin, A., Chennoufi, S. C., Canchaya, C., and Brüssow, H. (2002). Transcription mapping as a tool in phage genomics: The case of the temperate Streptococcus thermophilus phage Sfi21. Virology 296: 62–76.CrossRefGoogle Scholar
  233. Walker, S. A., and Klaenhammer, T. R. (1998). Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage ø31. Journal of Bacteriology 180: 921–931.Google Scholar
  234. Walker, S. A., Drombroski, C. S., and Klaenhammer, T. R. (1998). Common elements regulating gene expression in temperate and lytic bacteriophages of Lactococcus species. Applied and Environmental Microbiology 64: 1147–1152.Google Scholar
  235. Ward, L. J. H., Beresford, T. P. J., Lubbers, M. W., Jarvis, B. D. W., and Jarvis, A. W. (1993). Sequence analysis of the lysin gene region of the prolate lactococcal bacteriophage c2. Canadian Journal of Microbiology 39: 767–774.CrossRefGoogle Scholar
  236. Watanabe, K., Hayashia, M., Ishibashi, K., and Nakashima, Y. (1984). An N-acetylmuramidase induced by PL-1 phage infection of Lactobacillus casei. Journal of General Microbiology 130: 275–277.Google Scholar
  237. Waterfield, N. R., Lubbers, M. W., Polzin, K. M., le Page, R. W. F., and Jarvis, A. W. (1996). An origin of DNA replication from Lactococcus lactis bacteriophage c2. Applied and Environmental Microbiology 62: 1452–1453.Google Scholar
  238. Weerakoon, L. K., and Jayaswal, R. K. (1995). Sequence analysis of the region upstream of a peptidoglycan hydrolase-encoding gene from bacteriophage phi 11 of Staphylococcus aureus. FEMS Microbiology Letters 133: 9–15.Google Scholar
  239. Weisberg, R. A., and Landy, A. (1983). Site-specific recombination in phage lambda. In: R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg (Eds.), Lambdall (pp. 211–249). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  240. Whitehead, H. R., and Cox, G. A. (1935). The occurrence of bacteriophages in starter cultures of lactic streptococci. New Zealand Journal of Science and Technology 16: 319–320.Google Scholar
  241. Yasukawa, H., Kakikawa, M., Masamune, Y., Taketo, A., and Kodaira, K.-I. (1997). Purification and DNA-binding properties of the integrase protein Int encoded by Lactobacillus plantarum phage. Gene 204: 219–225.CrossRefGoogle Scholar
  242. Young, R. (1992). Bacteriophage lysis: Mechanism and regulation. Microbiology Review 56: 430–481.Google Scholar
  243. Young, R., and Bläsi, U. (1995). Holins: Form and function in bacteriophage lysis. FEMS Microbiology Review 17: 191–205.CrossRefGoogle Scholar
  244. Zuniga, M., Franke-Fayard, B., Venema, G., Kok, J., and Nauta, A. (2000). Characterization of the Putative replisome organizer of the Lactococcal bacteriophage rlt. Journal of Virology 76: 10234–10244.CrossRefGoogle Scholar
  245. Zylicz, M., Arg, D., Liberek, K., and Georgopolous, C. (1987). Initiation of DNA replication with purified host-and bacteriophage-encoded proteins: The role of the dnaK, dnaJ and dnaE heat shock proteins. EMBO Journal 8: 1601–1608.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Elizabeth Stanley
    • 1
  • Stephen Mc Grath
    • 1
  • Gerald F. Fitzgerald
    • 1
    • 2
    • 3
  • Douwe van Sinderen
    • 2
  1. 1.National Food BiotechnologyUniversity CollegeCorkIreland
  2. 2.Department of MicrobiologyUniversity CollegeCorkIreland
  3. 3.Food Science and TechnologyUniversity CollegeCorkIreland

Personalised recommendations