Skip to main content

Antibiotic Resistance and Transfer in Lactic Acid Bacteria

  • Chapter
Genetics of Lactic Acid Bacteria

Part of the book series: The Lactic Acid Bacteria ((LAAB,volume 3))

Abstract

Acquired antibiotic resistance, that is, resistance genes located on conjugative or mobilizable plasmids and transposons can be found in species of lactic acid bacteria (LAB) living in habitats (e.g., human and animal intestines) that are regularly challenged with antibiotics. Most data are available for pathogenic streptococci, enterococci, and enteric lactobacilli. However, conjugative genetic elements with antibiotic resistance traits detected in LAB from animals and food are very similar to elements characterized in pathogenic streptococci and enterococci, for example, θ-type replicating plasmids of the pAMßl/pIP501 family, and transposons of the Tn916 type. Observed resistance genes include tetM, ermAM, cat sat, and vanA.

A composite 29,871 bp resistance plasmid detected in Lactococcus lactis subsp. lactis isolated from a raw milk soft cheese contains tetS previously described in Listeria monocytogenes and Enterococcus faecalis, cat and str from Staphylococcus aureus, and a new efflux protein for macrolide antibiotics. Three of its five IS elements are almost or completely identical with IS1216 present in the vanA resistance transposon Tnl546. In streptococci (e.g., Strep. pneumoniae), transformation and homologous recombination have been proposed to lead to a mosaic gene structure of penicillin binding proteins, which provides protection against ß-lactam antibiotics.

These data support the view that in antibiotic-challenged habitats LAB, like other bacteria, participate in the communication systems which transfer resistance traits over species and genus borders. The prevalence of such bacteria with acquired resistances, like enterococci, is high in animals (and humans) that are regularly treated with antibiotics. Antibiotic resistance traits as selectable markers in genetic modification of LAB for different purposes are presently being replaced, for example, by metabolic traits to generate food-grade vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, C., Collins-Thompson, D., Duncan, C., and Stiles, M. E. (1992). Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum caTC2R. Plasmid 27: 169–176.

    CAS  Google Scholar 

  • Ahrne, S., Moli, G., and Axelsson, L. (1999). Transformation of Lactobacillus reuteri with electroporation — studies on the erythromycin resistance plasmid pLUL631. Current Microbiology 24: 199–205.

    Google Scholar 

  • Ainsa, J. A., Blokpoel, M. C. J., Otal, I., Young, D. B., de Smet, K. A. L., and Martin C. (1998). Molecular cloning and characterization of tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. Journal of Bacteriology 180: 5836–5843.

    CAS  Google Scholar 

  • Antony, S. J., Stratton, C. W., and Dummer, J. S. (1996). Lactobacillus bacteremia: Description of the clinical course in adult patients without endocarditis. Clinical Infectious Diseases 23: 773–778.

    CAS  Google Scholar 

  • Aarestrup, F. M., Bager, F., Jensen, N. E., Madsen, M., Meyling, A., and Wegener, H. C. (1998). Resistance to antimicrobial agents used for animal therapy in pathogenic-, zoonotic-, and indicator bacteria isolated from different food animals in Denmark: A baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). APMIS 106: 745–770.

    CAS  Google Scholar 

  • Arthur, M., and Courvalin, P. (1994). Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrobial Agents and Chemotherapy 37: 1563–1571.

    Google Scholar 

  • Baquero, F., Negir, M. C., Morosini, M. I., and Blazquez, J. (1997). The antibiotic selection process: concentration-specific amplification of low-level resistant populations. In: D. J. Chadwick, and J. Goode (Eds.), Antibiotic resistance. Origins, evolution, selection and spread (pp. 87–105). Chichester: John Wiley & Sons.

    Google Scholar 

  • Bates, J., Jordens, Z., and Selkon, J. B. (1993). Evidence for an animal origin of vancomycin-resistant enterococci. The Lancet 342: 490–491.

    CAS  Google Scholar 

  • Batish, V. K., and Ranganathan, B. (1986). Antibiotic susceptibility of deoxyribonuclease-positive enterococci isolated from milk and milk products and their epidemiological significance. International Journal of Food and Microbiology 16: 203–206.

    Google Scholar 

  • Berg, T., Firth, N., Apisiridej, S., Hettiaratchi, A., Leelaporn, A., and Skurray, R. A. (1998). Complete nucleotide sequence of pSK41: Evolution of staphylococcal conjugative multiresistance plasmids. Journal of Bacteriology 180: 4350–4359.

    CAS  Google Scholar 

  • Bolhuis, H., Poelarends, G., van Veen, H. W, Poolman, B., Driessen, A. J. M., and Konings, W. N. (1995). The lactococcal lmrP gene encodes a proton motive force- dependent drug transporter. Journal of Biological Chemistry 270: 26092–26098.

    CAS  Google Scholar 

  • Bolotin, A., Mauger, S., Malarme, K., Ehrlich, S. D., and Sorokin, A. (1999). Low-reduncancy sequencing of the entire Lactococcus lactis IL 1403 genome. Antonie van Leeuwenhoek 76: 21–16.

    Google Scholar 

  • Bonafede, M. E., Carias, L. L., and Rice, L. B. (1997). Enterococcal transposon Tn5384: Evolution of composite transposon through cointegration of enterococcal and staphylococcal plasmids. Antimicrobial Agents and Chemotherapy 41: 1854–1858.

    CAS  Google Scholar 

  • Brockmann, E., Jacobsen, B. L., Hertel, C., Ludwig, W., and Schleifer, K. H. (1996). Monitoring of genetically modified Lactococcus lactis in gnotobiotic and conventional rats by using antibiotic resistance markers and specific probe or primer based methods. Systematic and Applied Microbiology 19: 203–212.

    Google Scholar 

  • Celli, J., and Trieu-Cuot, P. (1998). Circularization of Tn976 is required for expression of the transposon-encoded transfer functions: Characterization of long tetracycline-inducible transcripts reading through the attachment site. Molecular Microbiology 28: 103–117.

    CAS  Google Scholar 

  • Charpentier, E., Gerbaud, G., and Courvalin, P. (1994). Presence of the Listeria tetracycline resistance gene tet(S) in Enterococcus faecalis. Antimicrobial Agents and Chemotherapy 38: 2330–2335.

    CAS  Google Scholar 

  • Charpentier, E., Gerbaud, G., Jacquet, C., Rocourt, J., and Courvalin, P. (1995). Incidence of antibiotic resistance in Listeria species. Journal of Infections Diseases 172: 277–281.

    CAS  Google Scholar 

  • Charteris, W. P., Kelly, P. M., Morelli, L., and Collins, J. K. (1998). Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Letters in Applied Microbiology 26: 333–337.

    CAS  Google Scholar 

  • Clewell, D. B. (1993). In: D. B. Clewell (Ed.), Bacterial conjugation. New York: Plenum Press.

    Google Scholar 

  • Clewell, D. B., and Flannagan, S. E. (1993). The conjugative transposons of Gram-positive bacteria. In: D. B. Clewell (Ed.), Bacterial Conjugation (pp. 369–393). New York: Plenum Press.

    Google Scholar 

  • Clewell, D. B., Flannagan, S. E., and Jaworsky, D. D. (1995). Unconstrained bacterial promiscuity: The Tn916–Tn1545 family of conjugative transposons. Trends in Microbiology 3: 229–236.

    CAS  Google Scholar 

  • Climo, M., Sharma, V. K., and Archer, G. L. (1996). Identification and characterization of the origin of conjugative transfer (oriT) and gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGOl. Journal of Bacteriology 178: 4975–4983.

    CAS  Google Scholar 

  • Corpet, E. E. (1988). Antibiotic resistance from food. New England Journal of Medicine 318: 1206–1207.

    CAS  Google Scholar 

  • Curragh, H. J., and Collins, M. A. (1992). High levels of spontaneous drug resistance in Lactobacillus. Journal of Applied Bacteriology 73: 31–36.

    CAS  Google Scholar 

  • Davies, J. E. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375–382.

    CAS  Google Scholar 

  • Davies, J. E. (1997). Origins, acquisition and dissemination of antibiotic resistance determinants. In: D. J. Chadwick and J. Goode (Eds.), Antibiotic Resistance. Origins, evolution, selection and spread (pp. 15–27). Chichester: John Wiley & Sons.

    Google Scholar 

  • De Fabrizio, S. V., Parada, J. L., and Ledford, R. A. (1994). Antibiotic resistance of Lactococcus lactis—an approach of genetic determinants location through a model system. Microbiologie—Aliments—Nutritions 12: 307–315.

    Google Scholar 

  • Dellaglio, F., Dicks, L. M. T., and Torriani, S. (1995). The genus Leuconostoc. In: B. J. B. Wood and W. H. Holzapfel (Eds.), The genera of lactic acid bacteria (pp. 235–278). London: Blackie Academic & Professional.

    Google Scholar 

  • Dessart, S. R., and Steenson, L. R. (1991). High frequency intergeneric and intrageneric conjugal transfer of drug resistance plasmids in Leuconostoc mesenteroides ssp. cremoris. Journal of Dairy Science 74: 2912–2919.

    Google Scholar 

  • Devriese, L. A., and Pot, B. (1995). The genus Enterococcus. In: B. J. B. Wood and W. H. Holzapfel (Eds.), The genera of lactic acid bacteria (pp. 327–367). London: Blackie Academic & Professional.

    Google Scholar 

  • De Vos, W. M., and Simons, G. F. M. (1994). Gene cloning and expression systems in Lactococci. In: M. J. Gasson and W. M. de Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 52–105). London: Blackie Academic & Professional.

    Google Scholar 

  • Dodd, H. M., Horn, N., and Gasson, M. J. (1990). Analysis of the genetic determinant for production of the peptide antibiotic nisin. Journal of General Microbiology 136: 555–566.

    CAS  Google Scholar 

  • Doucet-Populaire, F., Trieu-Cuot, P., Dosbaa, I., Andremont, A., and Courvalin, P. (1991). Inducible transfer of conjugative Transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrobial Agents and Chemotherapy 35: 185–187.

    CAS  Google Scholar 

  • Dougherty, B. A., Hill, C., Weidman, J. E., Richardson, D. R., Venter, J. C., and Ross, R. P. (1998). Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC0l from Lactococcus lactis DPC3147. Molecular Microbiology 29: 1029–1038.

    CAS  Google Scholar 

  • Elisha, B. G., and Courvalin, P. (1995). Analysis of genes encoding d-alanine: d-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene 152: 79–83.

    CAS  Google Scholar 

  • Elmer, G. W., Surawics, C. M., and McFarland, L. V. (1996). Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. Journal of the American Medical Association 275: 870–876.

    CAS  Google Scholar 

  • Falkiner, F. R. (1998). The consequences of antibiotic use in horticulture. Journal of Antimicrobial Chemotherapy 41:429–431.

    CAS  Google Scholar 

  • Flannagan, S. E., Zitzow, L. A., Su, Y. A., and Clewell, D. B. (1994). Complete nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32: 350–354.

    CAS  Google Scholar 

  • Foley, S., Bron, S., Venema, G., Daly, C., and Fitzgerald, G. F. (1996). Molecular analysis of the replication origin of the Lactococcus lactis plasmid pCI305. Plasmid 36: 125–141.

    CAS  Google Scholar 

  • Fons, M., Hégé, T., Ladiré, M., Raibaud, P., Ducluzeau, R., and Maguin, E. (1997). Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37: 199–203.

    CAS  Google Scholar 

  • Fraimow, H. S., and Courvallin, P. (2000). Resistance to glycopeptides in Gram-positive pathogens. In: V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.), Gram-Positive pathogens (pp. 621–634). Washington: ASM Press.

    Google Scholar 

  • Gasson, M. J., and Davies, F. L. (1980). Conjugal transfer of the drug resistance plasmid pAMßl in the lactic streptococci. FEMS Microbiology Letters 7: 51–53.

    CAS  Google Scholar 

  • Gasson, M. J., and Fitzgerald, G. F. (1994). Gene transfer systems and transposition. In: M. J. Gasson and W. M. de Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 1–51). London: Blackie Academic & Professional.

    Google Scholar 

  • Gevers, D., Huys, G., Devlieghere, F., Uyttendaele, M., Debevere, J., and Swings, J. (2000). Isolation and identification of tetracycline resistant lactic acid bacteria from pre-packed sliced meat products. Systematic and Applied Microbiology 23: 279–284.

    CAS  Google Scholar 

  • Giraffa, G., Carminati, D., and Neviani, E. (1997). Enterococci isolated from dairy products: a review of risks and potential technological use. Journal of Food Protection 60: 732–738.

    Google Scholar 

  • Grüneberg, R. N., and Hryniewicz, W. (1998). Clinical relevance of a European collaborative study on comparative susceptibility of Gram-positive clinical isolates to teichoplanin and vancomycin. International Journal of Antimicrobial Agents 10: 271–277.

    Google Scholar 

  • Guedon, G., Bourgoin, F., Pebay, M., Roussel, Y., Colmin, C., Simonet, J. M., and Decaris, B. (1995). Characterization and distribution of two insertion sequences, IS 1191 and iso-IS981, in Streptococcus thermophilus: Does intergeneric transfer of insertion sequences occur in lactic acid bacteria co-cultures? Molecular Microbiology 16: 69–78.

    CAS  Google Scholar 

  • Guiney, M., and Urwin, G. (1993). Frequency and antimicrobial susceptibility of clinical isolates of enterococci. European Journal of Clinical Microbiology and Infections Diseases 12: 362–366.

    CAS  Google Scholar 

  • Hakenbeck, R. (1999). ß-Lactam-resistant Streptococcus pneumoniae: epidemiology and evolutionary mechanism. Chemotherapy 45: 83–94.

    CAS  Google Scholar 

  • Hadorn, K., Kayser, F. H., and Hächler, H. (1994). Miniplasmid derived from Listeria monocytogenes multire-sistance plasmid pWDBl00 upon conjugal transfer into Staphylococcus epidermidis carries chloramphenicol resistance gene identical with staphylococcal gene. Systematic and Applied Microbiology 17: 492–500.

    Google Scholar 

  • Hadorn, K., Hächler, H., Schaffner, A., and Kayser, F. H. (1993). Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. European Journal of Clinical Microbiology and Infections Diseases 12: 928–937.

    CAS  Google Scholar 

  • Hammerum, A. M., Jensen, L. B., and Aarestrup, F. M. (1998). Detection of the satA gene and transferability of virginiamycin resistance in Enterococcus faecium from food-animals. FEMS Microbiology Letters 168: 145–151.

    CAS  Google Scholar 

  • Hancock, L. E., and Gilmore, M. S. (2000). Pathogenicicty of enterococci. In: V A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.), Gram-positive pathogens (pp. 251–258). Washington: ASM Press.

    Google Scholar 

  • Handwerger, S., and Skoble, J. (1995). Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy 39: 2446–2453.

    CAS  Google Scholar 

  • Herrero, M., Mayo, B., Gonzales, B., and Suarez, J. E. (1996). Evaluation of technologically important traits in lactic acid bacteria isolated from spontaneous fermentations. Journal of Applied Bacteriology 81: 565–570.

    Google Scholar 

  • Hooper, D. C. (2000). Mechanisms of fluoroquinolone resistance. In: V A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.), Gram-positive pathogens (pp. 685–693). Washington: ASM Press.

    Google Scholar 

  • Huycke, M. M., Sahm, D. F., and Gilmore, M. S. (1998). Multiple-drug resistant enterococci: The nature of the problem and agenda for the future. Emerging Infections Diseases 4: 239–249.

    CAS  Google Scholar 

  • Janzen, T., Kleinschmidt, J., Neve, H., and Geis, A. (1992). Sequencing and characterization of pSTl, a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiology Letters 95: 175–180.

    CAS  Google Scholar 

  • Jensen, L. B., Fridmodt-Moller, N., and Aarestrup, F. M. (1999). Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiology Letters 170: 151–158.

    CAS  Google Scholar 

  • Jensen, L. B. (1998). Internal variations in Tn1546-like elements due to the presence of IS1216V. FEMS Microbiology Letters 169: 349–354.

    CAS  Google Scholar 

  • Jett, B. D., Huycke, M., and Gilmore, M. S. (1994). Virulence of enterococci. Clin. Microbiol. Rev. 7: 462–478.

    CAS  Google Scholar 

  • Kernodle, D. S. (2000). Mechanisms of resistance to ß-lactam antibiotics. In: V A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.), Gram-Positive pathogens (pp. 609–620). Washington: ASM Press.

    Google Scholar 

  • Khan, E., Mack, J. P. G., Katz, R. A., Kulkosky, J., and Skalka, A. M. (1990). Retroviral integrase domain: DNA binding and the recognition of LTR sequences. Nucleic Acids Research 19: 851–861.

    Google Scholar 

  • Kilpper-Bälz, R., Fischer, G., and Schleifer, K.-H. (1982). Nucleic acid hybridization of group D streptococci. Current Microbiology 7: 245–250.

    Google Scholar 

  • Klaenhammer, T. R., and Sutherland, S. M. (1980). Detection of plasmid deoxyribonucleic acid in an isolate of Lactobacillus acidophilus. Applied Environmental Microbiology 39: 671–674.

    CAS  Google Scholar 

  • Klare, I., Heier, H., Claus, H., Böhme, G., Marin, S., Seltmann, G., Hakenbeck, R., Altanassova, V., and Witte, W. (1995a). Enterococcus faecium strains with vanA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and fecal samples of humans in the community. Microbial Drug Resistance 1: 265–272.

    CAS  Google Scholar 

  • Klare, I., Heier, H., Claus, H., Reissbrodt, R., and Witte, W. (1995b). vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiology Letters 125: 165–172.

    CAS  Google Scholar 

  • Klein, G., Pack, A., and Reuter, G. (1998). Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Applied Environmental Microbiology 64: 1825–1830.

    CAS  Google Scholar 

  • Kleinschmidt, J., Soeding, B., Teuber, M., and Neve, H. (1993). Evaluation of horizontal and vertical gene transfer and stability of heterologous DNA in Streptococcus thermophilus isolated from yogurt and yogurt starter cultures. Systematic and Applied Microbiology 16: 287–295.

    CAS  Google Scholar 

  • Knudtson, L. M., and Hartman, P. A. (1993). Antibiotic resistance among enterococci isolates from environmental and clinical sources. Journal of Food Protection 56: 489–492.

    CAS  Google Scholar 

  • Kullen, M. J., and Klaenhammer, T. R. (1999). Genetic modification of intestinal lactobacilli and bifidobacteria. In: G. W. Tannock (Ed.), Probiotics, a critical review (pp. 65–83). Wymondham: Horizon Scientific Press.

    Google Scholar 

  • Leenhouts, K., Bolhuis, A., Venema, G., and Kok, J. (1998). Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Applied Microbiology and Biotechnology 49: 417–423.

    CAS  Google Scholar 

  • Levy, S. B. (1997). Antibiotic resistance: An ecological imbalance. In: D. J. Chadwick and J. Goode (Eds.), Antibiotic Resistance. Origins, evolution, selection and spread (pp. 1–14). Chichester: John Wiley & Sons.

    Google Scholar 

  • Liassine, N., Frei, R., Jan, I., and Auckenthaler, R. (1998). Characterization of glycopeptide-resistant enterococci from a Swiss hospital. Journal of Clinical Microbiology 36: 1853–1858.

    CAS  Google Scholar 

  • Lin, C. F., Fung, Z. F., Wu, C. L., and Chung, T. C. (1996). Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid 36: 116–124.

    CAS  Google Scholar 

  • Lynch, C., Courvalin, P., and Nikaido, H. (1997). Active efflux of antimicrobial agents in wild-type strains of enterococci. Antimicrobial Agents and Chemotherapy 41: 869–871.

    CAS  Google Scholar 

  • Macrina, F. L., and Archer, G. L. (1993). Conjugation and broad host range plasmids in streptococci and staphylococci. In: D. B. Clewell (Ed.), Bacterial conjugation (pp. 313–368). New York: Plenum Press.

    Google Scholar 

  • Majewski, J., Zawadzki, P., Pickerill, P., Cohan, F. M., and Dowson, C. G. (2000). Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. Journal of Bacteriology 182: 1016–1023.

    CAS  Google Scholar 

  • Marra, D., and Scott, J. R. (1999). Regulation of excision of the conjugative transposon Tn916. Molecular Microbiology 31: 609–621.

    CAS  Google Scholar 

  • Mazel, D., and Davies, J. E. (1999). Antibiotic resistance in microbes. CMLS, Cellular and Molecular Life Science 56: 742–754.

    CAS  Google Scholar 

  • McDonald, L. C., Kuehnert, M. J., Tenover, F. C., and Jarvis, W. R. (1997). Vancomycin-resistant enterococci outside the health-care setting: Prevalence, sources, and public health implications. Emerging Infections Diseases 3: 311–317.

    CAS  Google Scholar 

  • McKay, L. L. (1983). Funcional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49: 259–274.

    CAS  Google Scholar 

  • McMurry, L. M., and Levy, S. B. (2000). Tetracycline resistance in Gram-positive bacteria. In: V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.), Gram-positive pathogens (pp. 660–677). Washington: ASM Press.

    Google Scholar 

  • Mercenier A., Pouwels, P. H., and Chassy, B. M. (1994). Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus. In: M. J. Gasson, and W. M. de Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 252–293). London: Blackie Academic & Professional.

    Google Scholar 

  • Mercer, D. K., Scott, K. P., Bruce-Johnson, W. A., Glover, L. A., and Flint, H. J. (1999). Fate of free DNA and transformation of the oral bacterium Streptococcus gordonii DL1 by plasmid DNA in human saliva. Applied Environmental Microbiology 65: 6–10.

    CAS  Google Scholar 

  • Ministry of Agriculture and Forestry (Finland) (1997). Tylosin and spiramycin as feed additives—Influence on the efficacy of therapeutic macrolides. Report from the Republic of Finland according to article 29 of the treaty between Member States of the European Union and the Republic of Finland on the scientific arguments for the adaptation to prohibit the use of tylosin and spiramycin as feed additives in animal nutrition by the National Veterinary and Food Research Institut (EELA) E. Tast, T. Honkanen-Buzalski, and P. Mannerkop (Eds.), Helsinki: Publications of Ministry of Agriculture and Forestry 5/1997.

    Google Scholar 

  • Ministry of Agriculture, Fisheries and Food (MAFF) (UK) (1998). A review of antimicrobial resistance in the food chain. July 1998. A technical report for MAFF. London: MAFF Publications.

    Google Scholar 

  • Ministry of Agriculture (Sweden), Government Official Reports 132 (1997). Antimicrobial feed additives. Report from the Commission on Antimicrobial Feed Additives. Stockholm: Norsteedts Tryckeri AG.

    Google Scholar 

  • Murray, I. A. (2000). Chloramphenicol resistance. In: V A. Fischetti, R. R. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.), Gram-positive pathogens (pp. 678–684). Washington: ASM Press.

    Google Scholar 

  • National Research Council & Institute of Medicine (1998). The use of drugs in food animals: benefits and risks. Washington: National Academy Press.

    Google Scholar 

  • Neu, H. C. (1992). The crisis in antibiotic resistance. Science 257: 1064–1973.

    CAS  Google Scholar 

  • Neve, H., Geis, A., and Teuber, M. (1987). Conjugation, a common plasmid transfer mechanism in lactic acid streptococci of dairy starter cultures. Systematic and Applied Microbiology 9: 151–157.

    CAS  Google Scholar 

  • Noble, W. C., Virani, Z., and Cree, R. G. A. (1992). Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiology Letters 93: 195–198.

    CAS  Google Scholar 

  • Orberg, P. K., and Sandine, W. E. (1985). Survey of antimicrobial resistance in lactic streptococci. Applied Environmental Microbiology 49: 538–542.

    CAS  Google Scholar 

  • Pechmann, H., and Teuber, M. (1980). Plasmid pattern of group N (lactic) streptococci. Zentralblatt für Bakteriologie C 1: 133–136.

    Google Scholar 

  • Perreten, V., Kollöffel, B., and Teuber, M. (1997a). Conjugal transfer of the Tn916-like transposon TnF0l from Enterococcus faecalis isolated from cheese to other Gram-positive bacteria. Systematic and Applied Microbiology 20: 27–38.

    CAS  Google Scholar 

  • Perreten, V., Schwarz, F., Cresta, L., Boeglin, M., Dasen, G., and Teuber, M. (1997b). Antibiotic resistance spread in food. Nature 389: 801–802.

    CAS  Google Scholar 

  • Perreten, V., Schwarz, F. V., Teuber, M., and Levy, S. B. (2000). Mef214, a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis subsp. lactis and in Escherichia coli. Antimicrobial Agents and Chemotherapy submitted.

    Google Scholar 

  • Poyart-Salmeron, C., Carlier, C., Trieu-Cuot, P., Courtieu, A. L., and Courvalin, P. (1990). Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. The Lancet 335: 1422–1426.

    CAS  Google Scholar 

  • Quednau, M., Ahrne, S., Petersson, A. C., and Molin, G. (1998). Antibiotic-resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. Journal of Applied Microbiology 84: 1163–1170.

    CAS  Google Scholar 

  • Reilly, A., and Käferstein, F. (1997). Food safety hazards and the application of the principles of the hazard analysis and critical control point (HACCP) system for their control in aquaculture production. Aquaculture Research 28: 735–752.

    Google Scholar 

  • Rice, L. B. (1998). Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrobial Agents and Chemotherapy 42: 1871–1877.

    CAS  Google Scholar 

  • Rice, L. B., and Carias, L. L. (1997). Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. Journal of Bacteriology 180: 714–721.

    Google Scholar 

  • Rinckel, L. A., and Savage, D. C. (1990). Characterization of plasmids and plasmid-borne macrolide resistance from Lactobacillus sp. strains. Plasmid 23: 100–133.

    Google Scholar 

  • Rollins, L. R., Lee, L. N., and LeBlanc, D. J. (1985). Evidence for a disseminated erythromycin resistance determinant mediated by Tn917-like sequences among group D streptococci isolated from pigs, chickens, and humans. Antimicrobial Agents and Chemotherapy 27: 439–444.

    CAS  Google Scholar 

  • Sami, M., Yamashita, H., Hirono, T., Kadokura, H., Kitamoto, K., Yoda, K., and Yamasaki, M. (1997). Hop-resistant Lactobacillus brevis contains novel plasmid harbouring a multidrug resistance-like gene. Journal of Fermentation Bioengineering 84: 1–6.

    CAS  Google Scholar 

  • Schaefer, A., Jahns, A., Geis, A., and Teuber, M. (1991). Distribution of the IS elements ISS1 and IS904 in lactococci. FEMS Microbiology Letters 80: 311–318.

    CAS  Google Scholar 

  • Schleifer, K.-H., and Ludwig, W. (1995). Phylogenese relationships of lactic acid bacteria. In: B. J. B. Wood,

    Google Scholar 

  • and W. H. Holzapfel (Eds.), The genera of lactic acid bacteria (pp. 7–18). London: Blackie Academic & Professional.

    Google Scholar 

  • Schmalreck, A. F., Teuber, M., and Hartl, A. (1975). Structural features determining the antibiotic potencies of natural and synthetic hop resins, their precursors and derivatives. Canadian Journal of Microbiology. 21: 205–212.

    CAS  Google Scholar 

  • Schmieger, H., and Schicklmaier, P. (1999). Transduction of multiple drug resistance of Salmonella enterica serovar thyphimurium DT104. FEMS Microbiology Letters 170: 251–256.

    CAS  Google Scholar 

  • Schwarz, F., Perreten, V., and Teuber, M. (1999). Characterization and partial sequence of a conjugative 49-kb antibiotic resistance plasmid from Enterococcus faecalis isolated from a dry sausage. Proc. 39th ICAAC, San Francisco, Poster No. 729a.

    Google Scholar 

  • Scott, J. R. (1992). Sex and the single circle: conjugative transposition. Journal of Bacteriology 174: 6005–6010.

    CAS  Google Scholar 

  • Sgorbati, B., Biavati, B., and Palenzona, D. (1995). The genus Bifidobacterium. In: B. J. B. Wood and W. H. Holzapfel (Eds.), The genera of lactic acid bacteria (pp. 279–306). London: Blackie Academic & Professional.

    Google Scholar 

  • Shaw, K. J., and Wright, G. D. (2000). Aminoglycoside resistance in Gram-positive pathogens. In: V A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.), Gram-positive pathogens (pp. 635–646). Washington: ASM Press.

    Google Scholar 

  • Sievers, M., Teuber, M., Wirsching, F., Perreten, V., Eisenring, R., Fähndrich, P., Schlaepfer, S., Krusch, U., Simm, Ch., and Löhmer, A. (1993). Antibiotic resistance properties of enterococci and staphylococci from fermented food. FoodMicro ′93, Book of Abstracts, p. 191.

    Google Scholar 

  • Simpson, W. J., Hammond, J. R. M., and Miller, R. B. (1988). Avoparcin and vancomycin: Useful antibiotics for the isolation of brewery lactic acid bacteria. Journal of Applied Bacteriology 64: 299–310.

    CAS  Google Scholar 

  • Simpson, W J., and Taguchi, H. (1995). The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. In: B. J. B. Wood, and W. H. Holzapfel (Eds.), The genera of lactic acid bacteria (pp. 125–172). London: Blackie Academic & Professional.

    Google Scholar 

  • Soeding, B., Kleinschmidt, J., Teuber, M., and Neve, H. (1993). Assessment of abilities of conjugal transfer and stability of pAMßl in dairy lactobacilli with emphasis on thermophilic and nonstarter lactobacilli. Systematic and Applied Microbiology 16: 296–302.

    Google Scholar 

  • Sozzi, T., and Smiley, M. B. (1980). Antibiotic resistances of yogurt starter cultures Streptococcus thermophilus and Lactobacillus bulgaricus. Applied Environmental Microbiology 40: 862–865.

    CAS  Google Scholar 

  • Stackebrandt, E., and Teuber, M. (1988). Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 70: 317–324.

    CAS  Google Scholar 

  • Tannock, G. W. (1987). Conjugal transfer of plasmid pAMßl in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis. Applied Environmental Microbiology 53: 2693–2695.

    CAS  Google Scholar 

  • Tannock, G. W. (Ed.) (1998). Probiotics. A critical review. Wymondham: Horizon Scientific Press.

    Google Scholar 

  • Tannock, G. W., Luchansky, J. B., Miller, L., Connell, H., Thode-Andersen, S., Mercer, A. A., and Klaenhammer, T. R. (1994). Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100–163. Plasmid 31: 60–71.

    CAS  Google Scholar 

  • Teuber, M. (1993). Lactic acid bacteria. In: J. Rehm, G. Reed, A. Pühler, and P. Stadler (Eds.), Biotechnology (pp. 326–366, Vol. 1, 2nd ed.). Weinheim: Verlag Chemie.

    Google Scholar 

  • Teuber, M. (1995). The genus Lactococcus. In: B. J. B. Wood and W. H. Holzapfel (Eds.), The genera of lactic acid bacteria, (pp. 173–234). London: Blackie Academic & Professional.

    Google Scholar 

  • Teuber, M. (1999). Spread of antibiotic resistance with food-borne pathogens. CMLS, Cellular and Molecular Life Science 56: 755–763.

    CAS  Google Scholar 

  • Teuber, M. (2000). Fermented milk products. In: B. M. Lund, T. C. Baird-Parker, and G. W. Gould (Eds.), The microbiological safety and quality of food (pp. 535–585, Vol. 1). Gaitherburg, MD: Aspen Publishers, Inc.

    Google Scholar 

  • Teuber, M., and Perreten, V. (2000). Role of milk and meat products as vehicles for antibiotic-resistant bacteria. ACTA Veterinaria Scandinavica Supplement 93: 75–87.

    CAS  Google Scholar 

  • Teuber, M., Perreten, V., and Wirsching, F. (1996). Antibiotikumresistente Bakterien: eine neue Dimension in der Lebensmittelmikrobiologie. Lebensmittel-Technologie 29: 182–199.

    Google Scholar 

  • Teuber, M., Meile, L., and Schwarz, F. (1999). Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek 76: 115–137.

    CAS  Google Scholar 

  • Teuber, M., and Schmalreck, A. F (1973). Membrane leakage in Bacillus subtilis 168 induced by the hop constituents lupulone, humulone, isohumulone and lupulinic acid. Archives of Microbiology 94: 159–171.

    CAS  Google Scholar 

  • Thal, L. A., Chow, J. W., Mahayni, R., Bonilla, H., Perri, M. B., Donabedia, S. A., Silverman, J., Taber, S., and Zervos, M. J. (1995). Characterization of antimicrobial resistance in enterococci of animal origin. Antimicrobial Agents and Chemotherapy 39: 2112–2115.

    CAS  Google Scholar 

  • Twomey, D. P., DeUrraza, P. J., McKay, L. L., and O’Sullivan, D. J. (2000). Characterization of AbiR, a novel multicomponent abortive infection mechanism encoded by plasmid pKR223 of Lactococcus lactis subsp. lactis KR2. Applied Environmental Microbiology 66: 2647–2651.

    CAS  Google Scholar 

  • Trieu-Cuot, P., de Cespédès, G., Bentorcha, F., Delbos, F., Gaspar, E., and Horaud, T. (1993). Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: Characterization of a new CAT determinant. Antimicrobial Agents and Chemotherapy 37: 2593–2598.

    CAS  Google Scholar 

  • Van den Braak, N., van Belkum, A., van Keulen, M., Vliegenthart, J., Verbrugh, H. A., and Endtz, H. P. (1998). Molecular characterization of vancomycin-resistant enterococci from hospitalized patients and poultry products in the Netherlands. Journal of Clinical Microbiology 36: 1927–1932.

    Google Scholar 

  • Van Veen, H. W., and Konings, W. N. (1998). The ABC family of multidrug transporters in microorganisms. Biochimica of Biophysica ACTA 1365, 31–36.

    Google Scholar 

  • Van Veen, H. W., Putnam, M., Margolles, A., Sakamoto, K., and Konings, W. N. (2000). Molecular pharmacological characterization of two multidrug transporters in Lactococcus lactis. Pharmacology and Therapeutics 85: 245–249.

    Google Scholar 

  • Vescovo, M., Morelli, L., and Bottazzi, V (1982). Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. Applied Environmental Microbiology 43: 50–56.

    CAS  Google Scholar 

  • Von Wright, A., and Räty, K. (1993). The nucleotide sequence for the replication region of pVS40, a lactococcal food grade cloning vector. Letters in Applied Microbiology 17: 25–28.

    Google Scholar 

  • Weisblum, B. (2000). Resistance to the macrolide-lincosamide-streptogramin antibiotics. In: V A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.), Gram-positive pathogens (pp. 694–710). Washington: ASM Press.

    Google Scholar 

  • WHO (1997). The medical impact of the use of antimicrobials in food animals. Report of a WHO Meeting, Berlin, Germany, 13–17 October (1997). Geneva: WHO.

    Google Scholar 

  • Willems, R. J. Ll, Top, J., van den Braak, N., van Belkum, A., Mevius, D. J., Hendriks, G., van Santen-Verheuvel, M., and van Embden, J. D. A. (1999). Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrobial Agents and Chemotherapy 43: 483–491.

    CAS  Google Scholar 

  • Witte, W. (1998). Medical consequences of antibiotic use in agriculture. Science 279: 996–997.

    CAS  Google Scholar 

  • Wu, K., An, F. Y., and Clewell, D. B. (1999). Enterococcus faecalis pheromone-responding plasmid pADl gives rise to an aggregation (clumping) response when cells are exposed to subinhibitory concentrations of chloramphenicol, erythromycin or tetracycline. Plasmid 41: 82–88.

    CAS  Google Scholar 

  • Wüst, J., Zbinden, R., and Kayser, F. H. (1998). Die Empfindlichkeit von Bakterien gegen Chemotherapeutika (Zürich 1996). Praxis 87: 403–412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teuber, M., Schwarz, F., Meile, L. (2003). Antibiotic Resistance and Transfer in Lactic Acid Bacteria. In: Wood, B.J.B., Warner, P.J. (eds) Genetics of Lactic Acid Bacteria. The Lactic Acid Bacteria, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0191-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0191-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4959-4

  • Online ISBN: 978-1-4615-0191-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics