Skip to main content

Introduction

Background, Relevant Genetic Techniques, and Terms

  • Chapter
Genetics of Lactic Acid Bacteria

Part of the book series: The Lactic Acid Bacteria ((LAAB,volume 3))

Abstract

It seems incredible now that 25 years ago we knew nothing of the molecular genetics of lactic acid bacteria (LAB). Whilst taxonomy had been to the fore in the early part of the last century, and the biochemistry of the organisms was established in its middle years, it was in the final quarter of the 20th century that we began to gain an insight into how the organisms function at the molecular level. This is well within the careers of many of those working in the field today and though it is an often-used phrase, in this case it is true that the pace of achievement has been nothing short of phenomenal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, C., Collins-Thompson, D., Duncan, C., and Stiles, M. E. (1992). Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum ca TC2R. Plasmid 27: 169–176.

    Article  CAS  Google Scholar 

  • Akcelik, M. (1999). The conjugal plasmid pLL10236 encodes lactose fermentation ability, restriction/modification activity, bacteriocin production and immunity in Lactococcus lactis subsp. lactis LL102. Food Microbiology 16: 487–494.

    Article  CAS  Google Scholar 

  • Andersson, S. G. E., and Kurland, C. G. (1990). Codon preferences in free-living microorganisms. Microbiological Reviews 54: 198–210.

    CAS  Google Scholar 

  • Araya, T., Ishinashi, N., Shimamura, S., Tanaka, K., and Takahashi, H. (1993). Genetic and molecular analysis of the rpoD gene from Lactococcus lactis. Bioscience Biotechnology & Biochemistry 57: 88–92.

    Article  CAS  Google Scholar 

  • Aukrust, T., and Blom, H. (1992). Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Research International 25: 253–261.

    Article  CAS  Google Scholar 

  • Aukrust, T., and Nes, I. F. (1988). Transformation of Lactobacillus plantarum with the plasmid pTVl by electroporation. FEMS Microbiology Letters 52: 127–132.

    Article  CAS  Google Scholar 

  • Banner, C. D. B., Moran, C. P., Jr., and Losick, R. (1983). Deletion analysis of a complex promoter for a developmentally regulated gene from Bacillus subtilis. Journal of Molecular Biology 168: 351–365.

    Article  CAS  Google Scholar 

  • Bashkirov, V. I., Khasanov, E. K., and Prozorov, A. A. (1987). Illegitimate recombination in Bacillus subtilis: nucleotide sequences at recombinant DNA junctions. Molecular & General Genetics 210: 578–580.

    Article  CAS  Google Scholar 

  • Benachour, A., Flahaut, S., Frere, J., and Novel, G. (1996). Plasmid transfer by electroporation and conjugation in Tetragenococcus and Pediococcus genera and evidence of plasmid-linked metabolic traits. Current Microbiology 32: 188–194.

    Article  CAS  Google Scholar 

  • Benz, R., and Zimmerman, U. (1981). The resealing process of lipid bilayers after reversible electrical breakdown. Biochimica Biophysica Acta 640: 169–178.

    Article  CAS  Google Scholar 

  • Berthier, F., Zagorec, M., Champomier-Vergès, M., Ehrlich, S. D., and Morel-Deville, F. (1996). Efficient transformation of Lactobacillus sake by electroporation. Microbiology 142: 1273–1279.

    Article  CAS  Google Scholar 

  • Bhowmik, T., and Steele, J. L. (1993). Development of an electroporation procedure for gene disruption in Lactobacillus helveticus CNRZ32. Journal of General Microbiology 139: 1433–1439.

    Article  CAS  Google Scholar 

  • Bibb, M. J., Ward, J. M., and Hopwood, D. A. (1978). Transformation of plasmid DNA into Streptomyces at high frequency. Nature 294: 398–400.

    Article  Google Scholar 

  • Bringel, F., and Hubert, J.-C. (1990). Optimized transformation by electroporation of Lactobacillus plantarum strains with plasmid vectors. Applied Microbiology & Biotechnology 33: 664–670.

    Article  CAS  Google Scholar 

  • Brondsted, L., and Hammer, L. (1999). Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Applied & Enviromental Microbiology 65: 752–758.

    CAS  Google Scholar 

  • Calvin, N. M., and Hanawalt, P. C. (1988). High-frequency transformation of bacterial cells by electroporation. Journal of Bacteriology 170: 2796–2801.

    CAS  Google Scholar 

  • Cambourn, W. M., Tannock, G. W., Yu, P. L., Pearce, L. E., and Pillidge, J. (1998). Plasmids with homology to pFX3 and pCI3340 in starter lactococci and lactobacilli and electroporation of selected strains with these vectors. International Dairy Journal 8: 251–254.

    Article  Google Scholar 

  • Campbell, A. M. (1962). Episomes. Advances in Genetics 11: 101–145.

    Article  Google Scholar 

  • Chang, D. (1989). Cell poration and cell fusion using an oscillating electric field. Biophysical Journal 56: 641–652.

    Article  CAS  Google Scholar 

  • Chang, D. (1992). Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. In: D. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sowers (Eds.), Guide to electroporation and electrofusion (pp. 9–27). London: Academic Press.

    Google Scholar 

  • Chang, D. C., and Reese, T. S. (1990). Changes in membrane structure induced by electroporation as revealed by rapid freezing electron microscopy. Biophysical Journal 58:1–12.

    Article  CAS  Google Scholar 

  • Chang, S., and Cohen, S. N. (1979). High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Molecular & General Genetics 168: 111–115.

    Article  CAS  Google Scholar 

  • Chassy, B. M. (1987). Prospects for the genetic manipulation of lactobacilli. FEMS Microbiology Reviews 46: 297–312.

    Article  CAS  Google Scholar 

  • Chassy, B. M., and Rokaw, E. (1981). Conjugal transfer of lactose plasmids in Lactobacillus casei. In: S. Levy, R. Clowes, and E. Koenig (Eds.), Molecular biology, pathogenesis and ecology of bacterial plasmids (p. 590). New York, USA: Plenum Press.

    Google Scholar 

  • Cheol, A., and Stiles, M. E. (1990). Mobilization of plasmids mediating bacteriocin production using pAMβl in a lactic acid bacterium from meat. FEMS Microbiology Reviews 87: 6.

    Google Scholar 

  • Chiaruttini, C., and Millet, M. (1993). Gene organization, primary structure and RNA processing analysis of a ribosomal RNA operon in Lactococcus lactis. Journal of Molecular Biology 230: 57–76.

    Article  CAS  Google Scholar 

  • Clewell, D. B., Yagi, Y., Dunny, G. M., and Schultz, S. K. (1974). Characterization of three deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: Identification of a plasmid determining erythromycin resistance. Journal of Bacteriology 117: 283–289.

    CAS  Google Scholar 

  • Cocconcelli, P. S., Morelli, L. , Vescovo, M., and Bottazzi, V. (1986). Intergeneric protoplast fusion in lactic acid bacteria. FEMS Microbiology Letters 35: 211–214.

    Article  CAS  Google Scholar 

  • Cosby, W. M., Casas, I. A., and Dobrogosz, W. J. (1988). Formation, regeneration, and transfection of Lactobacillus plantarum protoplasts. Applied & Environmental Microbiology 54: 2599–2602.

    CAS  Google Scholar 

  • Coutourier, M., Bex, E., Bergquist, P. L., and Maas, W. K. (1988). Identification and classification of bacterial plasmids. Microbiological Reviews 52: 375–395.

    Google Scholar 

  • David, S., Simons, G., and de Vos, W. M. (1989). Plasmid transformation by electroporation of Leuconostoc paramesenteroides and its use in molecular cloning. Applied & Environmental Microbiology 55: 1483–1489.

    CAS  Google Scholar 

  • de Vos, W. M., and Davies, F. L. (1984). Plasmid DNA in lactic streptococci: Bacteriophage resistance and proteinase plasmids in Streptococcus cremoris SK11. In: Third European Congress on Biotechnology (Vol. 3, pp. 201–205). Verlag Chemie Weisheim.

    Google Scholar 

  • de Vos, W. M., Kleerebezem, M., and Kuipers, O. P. (1997). Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content. Current Opinion in Biotechnology 8: 547–553.

    Article  Google Scholar 

  • de Vos, W. M., and Simons, G. F. M. (1994). Gene cloning and expression systems in lactococci. In: M. J. Gasson and W. M. de Vos (Eds.), Genetics and Biotechnology of Lactic Acid Bacteria (pp. 52–105). Glasgow: Blackie Academic & Professional.

    Chapter  Google Scholar 

  • Del Solar, G. H., and Espinosa, M. (1992). The copy number of plasmid pLSl is regulated by two trans-acting plasmid products—the anti-sense RNAII and repressor protein, Rep A. Molecular Microbiology 6: 83–94.

    Article  Google Scholar 

  • Dempsey, L. A., and Dubnau, D. A. (1989). Identification of plasmid and Bacillus subtilis chromosomal recombination sites used for pE194 integration. Journal of Bacteriology 171: 2856–2865.

    CAS  Google Scholar 

  • Djordjevic, G. M., and Klaenhammer, T. R. (1998). Inducible gene expression systems in Lactococcus lactis. Molecular Biotechnology 9: 127–139.

    Article  CAS  Google Scholar 

  • Doi, R. H., and Wang, L.-F. (1986). Multiple prokaryotic ribonucleic acid polymerase sigma factors. Microbiological Reviews 50: 227–243.

    CAS  Google Scholar 

  • Dougherty, B. A., Hill, C., Weidman, J. F., Richardson, D. R., Venter, J. C., and Ross, R. P. (1998). Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRCOl from Lactococcus lactis DPC3147. Molecular Microbiology 29: 1029–1038.

    Article  CAS  Google Scholar 

  • Dupont, L., Boizetbonhoure, B., Coddeville, M., Auvray, F., and Ritzenthaler, P. (1995). Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage MV4 and construction of an integration-proficient vector for Lactobacillus plantarum. Journal of Bacteriology 177: 586–595.

    CAS  Google Scholar 

  • Ehrenfeld, E. E., Kessler, R. E., and Clewell, D. B. (1986). Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. Journal of Bacteriology 168: 6–12.

    CAS  Google Scholar 

  • Fantuzzi, L. (1991). Instability of lactose and citrate metabolism of Leuconostoc strains. Biotechnology Letters 13: 433–136.

    Article  CAS  Google Scholar 

  • Fitzsimons, A., Hols, P., Jore, J., Leer, R. J., O’Connell, M., and Delcour, J. (1994). Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus α-amylase gene. Applied & Environmental Microbiology 60: 3529–3535.

    CAS  Google Scholar 

  • Franke, A. E., and Clewell, D. B. (1981). Evidence for conjugal transfer of a Streptococcus faecalis transposon (Tn 916) from a chromosomal site in the absence of plasmid DNA. Journal of Bacteriology 145: 494–502.

    CAS  Google Scholar 

  • Fremaux, C., de Antoni, G. L., Raya, R. R., and Klaenhammer, T. R. (1993). Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate bacteriophage øadh. Gene 126: 61–66.

    Article  CAS  Google Scholar 

  • Gaier, W., Vogel, R. F., and Hammes, W. P. (1990). Genetic transformation of intact cells of Lactobacillus curvatus Lc2-c and Lact, sake Ls2 by electroporation. Letters in Applied Microbiology 11: 81–83.

    Article  CAS  Google Scholar 

  • Garmyn, D., Ferain, T., Bernard, N., Hols, P., Deplace, B., and Delcour, J. (1995). Pediococcus acidilactici LDHD gene—cloning, nucleotide sequence, and transcriptional analysis. Journal of Bacteriology 111: 3427–3437.

    Google Scholar 

  • Gasson, M. J. (1990). In vivo genetic systems in lactic acid bacteria. FEMS Microbiology Reviews 87: 43–60.

    Article  CAS  Google Scholar 

  • Gasson, M. J., Gordon, J.-J., Pillidge, C. J., Eaton, T. J., Jury, K., and Shearman, C. A. (1995). Characterization and exploitation of conjugation in Lactococcus lactis. International Dairy Journal 5: 757–762.

    Article  CAS  Google Scholar 

  • Gibson, E. M., Chase, N. M., London, S. B., and London, J. (1979). Transfer of plasmid-mediated antibiotic resistance from streptococci to lactobacilli. Journal of Bacteriology 137: 614–619.

    CAS  Google Scholar 

  • Gonzalez, C. F., and Kunka, B. S. (1985). Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci. Applied & Environmental Microbiology 49: 627–633.

    CAS  Google Scholar 

  • Grosjean, H., and Fiers, W. (1982). Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18: 199–209.

    Article  CAS  Google Scholar 

  • Gruss, A., and Ehrlich, D. (1989). The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiological Reviews 53: 231–241.

    CAS  Google Scholar 

  • Harlander, S. K. (1987). Transformation of Streptococcus lactis by electroporation. In: J. J. Ferretti and R. Curtis (Eds.), Streptococcal genetics (pp. 229–233). Washington, DC: American Society of Microbiology.

    Google Scholar 

  • Hashiba, H., Takiguchi, R., Iskii, S., and Aoyama, K. (1990). Transformation of Lactobacillus helveticus subsp. jugurti with plasmid pLHR by electroporation. Agricultural & Biological Chemistry 54: 1537–1541.

    Article  CAS  Google Scholar 

  • Hashiba, H., Takiguchi, R., Jyoho, K., and Aoyama, K. (1992). Establishment of a host-vector system in Lactobacillus helveticus with β-galactosidase activity as a selection marker. Bioscience Biotechnology & Biochemistry 56: 190–194.

    Article  CAS  Google Scholar 

  • Hawley, D. K., and McClure, W R. (1983). Compilation and analysis of Escherichia coli promoter sequences. Nucleic Acid Research 11: 2237–2255.

    Article  CAS  Google Scholar 

  • Hayes, F., Caplice, E., McSweeny, A., Fitzgerald, G. F., and Daly, C. (1990a). pAMβl-associated mobilization of proteinase plasmids from Lactococcus lactis subsp. lactis UC317 and L. lactis subsp. cremoris UC205. Applied & Environmental Microbiology 56:195–201.

    CAS  Google Scholar 

  • Hayes, F., Daly, C., and Fitzgerald, G. F. (1990b). High frequency, site specific recombination between lactococcal and pAMβl plasmid DNAs. Journal of Bacteriology 172: 3485–3489.

    Google Scholar 

  • Helmann, J. D., and Chamberlain, M. J. (1988). Structure and function of bacterial sigma factors. Annual Review of Biochemistry 57: 839–872.

    Article  CAS  Google Scholar 

  • Hofemeister, J., Israeli-Reches, M., and Dubnau, D. (1983). Integration of plasmid pE194 at multiple sites on the Bacillus subtilis chromosome. Molecular & General Genetics 189: 58–68.

    Article  CAS  Google Scholar 

  • Holo, H., and Nes, I. F. (1989). High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Applied & Environmental Microbiology 55: 3119–3123.

    CAS  Google Scholar 

  • Hols, P., Ferain, T., Garmyn, D., Bernard, N., and Delcour, J. (1994). Use of homologous expression-secretion signals & vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for α-amylase & levanase expression. Applied & Environmental Microbiology 60: 1401–1413.

    CAS  Google Scholar 

  • Ikeda, H., Kawasaki, I., and Gellert, M. (1984). Mechanism of illegitimate recombination: common sites for recombination & cleavage mediated by Escherichia coli DNA gyrase. Molecular & General Genetics 196: 546–549.

    Article  CAS  Google Scholar 

  • Iwata, M., Mada, M., and Ishiwa, H. (1986). Protoplast fusion of Lactobacillus fermentum. Applied & Environmental Microbiology 52: 392–393.

    CAS  Google Scholar 

  • Jannière, L., and Ehrlich, S. D. (1987). Recombination between short repeated sequences is more frequent in plasmids than in the chromosome of Bacillus subtilis. Molecular & General Genetics 210: 116–121.

    Article  Google Scholar 

  • Jensen, P. R., and Hammer, K. (1998). The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Applied & Environmental Microbiology 64: 82–87.

    CAS  Google Scholar 

  • Jobin, M. P., Delmas, E., Garmyn, D., Divies, C., and Guzzo, J. (1997). Molecular characterization of the gene encoding an 18 kDa small heat shock protein associated with the membrane of Leuconostoc oenos. Applied & Environmental Microbiology 63: 609–614.

    CAS  Google Scholar 

  • Josson, K., Scheirlinck, T., Michiels, F., Platteeuw, C., Stanssens, P., Joos, H., Dhaese, P., Zabeau, M., and Mahillon, J. (1989). Characterization of a Gram-positive broad-host-range plasmid isolated from Lactobacillus hilgardii. Plasmid 21: 9–20.

    Article  CAS  Google Scholar 

  • Josson, K., Soetaert, P., Michiels, F., Joos, H., and Mahillon, J. (1990). Lactobacillus hilgardii plasmid pLAB1000 consists of two functional cassettes commonly found in other Gram-positive organisms. Journal of Bacteriology 172: 3089–3099.

    CAS  Google Scholar 

  • Kim, W. J., Ray, B., and Johnson, M. C. (1992). Plasmid transfers by conjugation and electroporation in Pediococcus acidilactici. Journal of Applied Bacteriology 72: 201–207.

    Article  CAS  Google Scholar 

  • Klaenhammer, T. R. (1995). Genetics of intestinal lactobacilli. International Dairy Journal 5: 1019–1058.

    Article  CAS  Google Scholar 

  • Kleeman, E. G., and Klaenhammer, T. R. (1982). Adherence of Lactobacillus species to human fetal intestinal cells. Journal of Dairy Science 65: 2063–2069.

    Article  CAS  Google Scholar 

  • Klein, J. R., Ulrich, C., Wegmann, U., Meyer-Barton, E., Plapp, R., and Henrich, B. (1995). Molecular tools for the genetic modification of dairy lactobacilli. Systematic & Applied Microbiology 18: 493–503.

    Article  Google Scholar 

  • Kondo, J. K., and McKay, L. L. (1984). Plasmid transformation of Streptococcus lactis protoplasts: Optimization and use in molecular cloning. Applied & Environmental Microbiology 48: 252–259.

    CAS  Google Scholar 

  • Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M., and de Vos, W. M. (1997). Controlled overproduction of proteins by lactic acid bacteria. Trends in Biotechnology 15: 135–140.

    Article  CAS  Google Scholar 

  • Labarre, C., Divies, C., and Guzzo, J. (1996). Genetic organization of the mle locus and identification of a mleR-like gene from Leuconostoc oenos. Applied & Environmental Microbiology 62: 4493–4498.

    CAS  Google Scholar 

  • Langella, P., Zagorec, M., Ehrlich, S. D., and Morel-Deville, F. (1996). Intergeneric and intrageneric conjugal transfer of plasmids pAMβl, pIL205 and pIP501 in Lactobacillus sake. FEMS Microbiology Letters 139: 51–56.

    CAS  Google Scholar 

  • Leenhouts, K. J., Kok, J., and Venema, G. (1989). Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Applied & Environmental Microbiology 55: 394–400.

    CAS  Google Scholar 

  • Leer, R. J., van Luijk, N., Posno, M., and Pouwels, P. H. (1992). Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC8014. Molecular & General Genetics 234: 265–274.

    CAS  Google Scholar 

  • Lewin, B. (1997). Genes VI. Oxford University Press, ISBN 0-19-857778-8.

    Google Scholar 

  • Lillehaug, D., Nes, I. F., and Birkel, N. K. (1997). A highly efficient and stable system for site-specific integration of genes and plasmids into the phage phi LC3 attachment site (attB) of the Lactococcus lactis chromosome. Gene 188: 129–136.

    Article  CAS  Google Scholar 

  • Lin, J. H.-C, and Savage, D. C. (1986). Genetic transformation of rifampicin resistance in Lactobacillus acidophilus. Journal of General Microbiology 132: 2107–2111.

    CAS  Google Scholar 

  • Lin, J., Schmitt, P., and Davies, C. (1991). Characterization of a citrate-negative mutant of Leuconostoc mesenteroides spp. mesenteroides: Metabolic and plasmidic properties. Applied Microbiology & Biotechnology 34: 628–631.

    Article  CAS  Google Scholar 

  • Lin, M. Y., Harllander, S., and Savaiano, D. (1996). Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus. Applied Microbiology & Biotechnology 45: 484–489.

    CAS  Google Scholar 

  • Liu, C. Q., Harvey, M. L., and Dunn, N. W. (1997). Cloning of a gene encoding nisin resistance from Lactococcus lactis subsp. lactis M189 which is transcribed from an extended — 10 promoter. Journal of General Applied Microbiology 43: 67–73.

    Article  CAS  Google Scholar 

  • Losick, R., and Pero, J. (1981). Cascades of sigma factors. Cell 25: 582–584.

    Article  CAS  Google Scholar 

  • Luchansky, J. B., Muriana, P. M., and Klaenhammer, T. R. (1988). Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Molecular Microbiology 2: 637–646.

    Article  CAS  Google Scholar 

  • MacCormick, C. A., Griffin, H. G., and Gasson, M. J. (1995). Construction of a food-grade host vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiology Letters 127: 105–109.

    Article  CAS  Google Scholar 

  • Martinez-Murcia, A. J., and Collins, M. D. (1990a). Nucleotide sequence of 16S ribosomal RNA from Lactobacillus viridescens and Lactobacillus confusus. Nucleic Acid Research 18: 3402.

    Article  Google Scholar 

  • Martinez-Murcia, A. J., and Collins, M. D. (1990b). Nucleotide sequence of 16S ribosomal RNA from Lactobacillus kandleri and Lactobacillus minor. Nucleic Acid Research 18: 3401.

    Article  Google Scholar 

  • Marvo, S. L., King, S. R., and Jaskunas, S. R. (1983). Role of short regions of homology in inter-molecular illegitimate recombination events. Proceedings of the National Academy of Sciences USA 80: 2452–2456.

    Article  CAS  Google Scholar 

  • McIntyre, D. A., and Harlander, S. K. (1989). Genetic transformation of intact Lactococcus lactis subsp. lactis by high voltage electroporation. Applied & Environmental Microbiology 55: 604–610.

    CAS  Google Scholar 

  • McCracken, A., and Timms, P. (1999). Efficiency of transcription from promoter sequence variants in Lactobacillus is both strain and context dependent. Journal of Bacteriology 181: 6569–6572.

    CAS  Google Scholar 

  • McKay, L. L., (1983). Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49: 259–274.

    Article  CAS  Google Scholar 

  • McKay, L. L., Baldwin, K. A., and Efstathiou, J. D. (1976). Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Applied & Environmental Microbiology 32: 45–52.

    CAS  Google Scholar 

  • McKay, L. L., Cords, B. R., and Baldwin, K. A. (1973). Transduction of lactose metabolism in Streptococcus lactis C2. Journal of Bacteriology 115:810–815.

    CAS  Google Scholar 

  • Mercenier, A., and Chassy, B. M. (1988). Strategies for the development of bacterial transformation systems. Biochimie 70: 503–517.

    Article  CAS  Google Scholar 

  • Mercenier, A., Pouwels, P. H., and Chassy, B. M. (1994). Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus. In: M. J. Gasson and W. M. de Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 252–293). Glasgow: Blackie Academic & Professional.

    Chapter  Google Scholar 

  • Mercenier, A., Robert, C., Romero, D. A., Costellino, I., Slos, P., and Lemoine, Y. (1988a). Development of an efficient sphaeroplast transformation procedure for S. thermophilus: the use of transfection to define a regeneration medium. Biochimie 70: 567–577.

    Article  Google Scholar 

  • Mercenier, A., Slos, P., Fallen, M., and Lecocq, J. P. (1988b). Plasmid transduction in Streptococcus thermophilus. Molecular & General Genetics 212: 386–389.

    Article  Google Scholar 

  • Moran, C. P., Jr., Johnson, W. C., and Losick, R. (1982). Close contacts between σ37-RNA polymerase and a Bacillus subtilis chromosomal promoter. Journal of Molecular Biology 162: 709–713.

    Article  CAS  Google Scholar 

  • Morelli, L., Cocconcelli, P. S., Bottazzi, V., Damiani, G., Ferretti, L., and Sgaramella, V. (1987). Lactobacillus protoplast transformation. Plasmid 17: 73–75.

    Article  CAS  Google Scholar 

  • Muriana, P. M., and Klaenhammer, T. R. (1987). Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Applied & Environmental Microbiology 53: 553–560.

    CAS  Google Scholar 

  • Natori, Y., Kano, Y., and Imamoto, F. (1990). Genetic transformation of Lactobacillus casei by electroporation. Biochimie 72: 265–269.

    Article  CAS  Google Scholar 

  • Neummann, E., Schaefer-Ridder, M., and Hofschneider, P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO Journal 1: 841–845.

    Google Scholar 

  • Neummann, E., Schaefer-Ridder, M., and Hofschneider, P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO Journal 1: 841–845. Novick, R. P. (1987). Plasmid incompatibility. Microbiological Reviews 51: 381–395.

    CAS  Google Scholar 

  • Okamoto, T., Fujita, Y., and Irie, R. (1983). Fusion of protoplasts of Streptococcus lactis. Agricultural & Biological Chemistry 47: 2675–2676.

    Article  CAS  Google Scholar 

  • Okamoto, T., Fujita, Y., and Irie, R. (1985). Interspecific protoplast fusion between Streptococcus cremoris and Streptococcus lactis. Agricultural & Biological Chemistry 49: 1371–1376.

    Article  CAS  Google Scholar 

  • Perkins, J. B., and Youngman, P. J. (1986). A physical and functional analysis of Tn917, a Streptococcus transposon in the Tn3 family that functions in Bacillus subtilis. Plasmid 12: 119–138.

    Article  Google Scholar 

  • Platteeuw, C., Simons, S. G., and de Vos, W. M. (1994). Use of the Escherichia coli β-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Applied & Environmental Microbiology 60: 587–593.

    CAS  Google Scholar 

  • Platteeuw, C., van Alen-Boerrigter, I., van Schalkwijk, S., and de Vos, W. M. (1996). Food-grade cloning and expression system for Lactococcus lactis. Applied & Environmental Microbiology 62: 1008–1013.

    CAS  Google Scholar 

  • Platt, T. (1986). Transcription termination and the regulation of gene expression. Annual Review of Biochemistry 55: 339–372.

    Article  CAS  Google Scholar 

  • Posno, M., Heuvelmans, P. T. H. M., van Giezen, M. J. F., Lockman, B. C., Leer, R. J., and Pouwels, P. H. (1991). Complementation of the inability of Lactobacillus strains to utilize D-xylose with xylose catabolism-encoding of Lactobacillus pentosus. Applied & Environmental Microbiology 57: 2764–2766.

    CAS  Google Scholar 

  • Pouwels, P. H., and Leer, R. J. (1993). Genetics of lactobacilli: Plasmids and gene expression. Antonie van Leeuwenhoek 64: 85–107.

    Article  Google Scholar 

  • Powell, I. B., Achen, M., Hillier, A. J., and Davidson, B. E. (1988). A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Applied & Environmental Microbiology 54: 655–660.

    CAS  Google Scholar 

  • Pribnow, D. (1975). Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proceedings of the National Academy of Sciences USA 72: 784–788.

    Article  CAS  Google Scholar 

  • Quirasco, M., Lopez-Munguia, A., Remaud-Simeon, M., Monsan, P., and Farres, A. (1999). Induction and transcription studies of the dextransucrase gene in Leuconostoc mesenteroides NRRL B-512F. Applied & Environmental Microbiology 65: 5504–5509.

    CAS  Google Scholar 

  • Rauch, P. J. G., and de Vos, W. M. (1992). Characterization of the novel nisin-sucorse conjugative transposon, tn5276 and its insertion in Lactococcus lactis. Journal of Bacteriology 174: 1280–1287.

    CAS  Google Scholar 

  • Raya, R. R., Fremaux, C., de Antoni, G. L., and Klaenhammer, T. R. (1992). Site-specific integration of the temperate bacteriophage øadh into the Lactobacillus gasseri chromosome and molecular characterisation of the phage (attP) and bacterial (attB) attachment sites. Journal of Bacteriology 174: 5584–5592.

    CAS  Google Scholar 

  • Raya, R. R., and Klaenhammer, T. R. (1992). High-frequency plasmid transduction by Lactobacillus gasseri bacteriophage øadh. Applied & Environmental Microbiology 58: 187–193.

    CAS  Google Scholar 

  • Raya, R. R., Kleeman, E. G., Luchansky, J. B., and Klaenhammer, T. R. (1989). Characterization of the temperate bacteriphage øadh and plasmid transduction in Lactobacillus acidophilus ADH. Applied & Environmental Microbiology 55: 2206–2213.

    CAS  Google Scholar 

  • Reed, W. M. (1987). Protoplast fusion of Lactobacillus acidophilus and Streptococcus lactis via electric field or chemical induction. Journal of General & Applied Microbiology 33: 287–294.

    Article  CAS  Google Scholar 

  • Reneiro, R., Cocconcelli, P., Bottazzi, V, and Morelli, L. (1992). High frequency of conjugation in Lactobacillus is mediated by an aggregation-promoting factor. Journal of General Applied Microbiology 138: 763–768.

    Google Scholar 

  • Rixon, J. E., Hazlewood, G. P., and Gilbert, H. J. (1990). Integration of an unstable plasmid into the chromosome of Lactobacillus plantarum. FEMS Microbiology Letters 71: 105–110.

    Article  CAS  Google Scholar 

  • Roos, S., Lindgren, S., and Jonsson, H. (1999). Autoaggregation of Lactobacillus reuteri is mediated by a putative DEAD-box helicase. Molecular Microbiology 32: 427–436.

    Article  CAS  Google Scholar 

  • Sanders, M. E., and Nicholson, M. A. (1987). A method for genetic transformation of non-protoplasted Streptococcus lactis. Applied & Environmental Microbiology 53: 1730–1736.

    CAS  Google Scholar 

  • Sanoja, R. R., Morlon-Guyot, J., and Guyot, J. P. (1999). Electrotransformation of Lactobacillus manihotivorans LMG 18010(T) and 18011. Journal of Applied Microbiology 87: 99–107.

    Article  CAS  Google Scholar 

  • Schaller, H., Gray, C., and Hermann, K. (1975). Nucleotide sequence of an RNA polymerase binding site from the DNA bacteriophage fd. Proceedings of the National Academy of Sciences USA 72: 737–741.

    Article  CAS  Google Scholar 

  • Scheirlinck, T., Mahillon, J., Joos, H., Dhaese, P., and Michiels, F. (1989). Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Applied & Environmental Microbiology 55: 2130–2137.

    CAS  Google Scholar 

  • Shimizu-Kadota, M., Shibahara-Stone, H., and Ishiwa, H. (1991). Shuttle plasmid vectors for Lactobacillus casei and Escherichia coli with a minus origin. Applied & Environmental Microbiology 57: 3292–3300.

    CAS  Google Scholar 

  • Shine, J., and Dalgarno, L. (1974). The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy Sciences USA 71: 1342–1346.

    Article  CAS  Google Scholar 

  • Shrago, A. W., Chassy, B. M., and Dobrogosz, W. J. (1986). Conjugal plasmid transfer (pAMβl) Lactobacillus plantarum. Applied & Environmental Microbiology 52: 574–576.

    CAS  Google Scholar 

  • Shrago, A. W., and Dobrogosz, W. J. (1988). Conjugal transfer of group B Streptococcal plasmids and co-mobilization of Escherichia coli-Streptococcus shuttle plasmids to Lactobacillus plantarum. Applied & Environmental Microbiology 54: 824–826.

    CAS  Google Scholar 

  • Simon, D., Rouault, A., and Chopin, M.-C. (1986). High-efficiency transformation of Streptococcus lactis protoplasts by plasmid DNA. Applied & Environmental Microbiology 52: 394–395.

    CAS  Google Scholar 

  • te Riele, H., Michel, B., and Ehrlich, S. D. (1986). Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proceedings of the National Academy of Sciences USA 83: 2541–2545.

    Article  Google Scholar 

  • Thompson, J. K., and Collins, M. A. (1996). Improvement in electroporation efficiency for Lactobacillus plantarum by the inclusion of high concentrations of glycine in the growth medium. Journal of Microbiological Methods 26: 73–79.

    Article  CAS  Google Scholar 

  • Thompson, J. K., McConville, K. J., McReynolds, C., and Collins, M. A. (1997). Electrotransformation of Lactobacillus plantarum using linearized plasmid DNA. Letters in Applied Microbiology 25: 419–125.

    Article  CAS  Google Scholar 

  • Thompson, J. K., McConville, K. J., McReynolds, C., and Collins, M. A. (1999). Potential of conjugal transfer as a strategy for the introduction of recombinant genetic material into strains of Lactobacillus helveticus. Applied & Environmental Microbiology 65: 1910–1914.

    CAS  Google Scholar 

  • Tohyama, K., Sakurai, T., and Arai, H. (1971). Transduction by temperate phage PLS-1 in Lactobacillus salivarius. Japanese Journal of Bacteriology 26: 482–487.

    Article  Google Scholar 

  • Tomich, P. K., An, F. Y., and Clewell, D. B. (1980). Properties of erythromycin-inducible transposon, Tn917 in Streptococcus faecalis. Journal of Bacteriology 141: 1366–1374.

    CAS  Google Scholar 

  • Travers, A. A., and Burgess, R. R. (1969). Cyclic re-use of the RNA polymerase sigma factor. Nature 222: 537–540.

    Article  CAS  Google Scholar 

  • Van der Lelie, D., van der Vossen, J. M. B. M., and Venema, G. (1988). Effect of plasmid incompatibility on DNA transfer to Streptococcus cremoris. Applied & Environmental Microbiology 54: 865–871.

    Google Scholar 

  • Van Rooijen, R. J., Gasson, M. J., and de Vos, W. M. (1992). Characterization of the promoter of the Lactococcus lactis lactose operon: Contribution of flanking sequences and LacR repressor to its activity. Journal of Bacteriology 174: 2273–2280.

    Google Scholar 

  • Vaughan, E. E., David, S., Harrington, A., Daly, C., Fitzgerald, G. F., and de Vos, W. M. (1995). Characterization of plasmid-encoded citrate permease (citP) genes from Leuconostoc species reveals high sequence conservation with the Lactococcus lactis citP gene. Applied & Environmental Microbiology 61: 3172–3176.

    CAS  Google Scholar 

  • Vescovo, M., Bottazzi, V., and Gasson, M. J. (1983). Conjugal transfer of broad-host range plasmid pAMβl into enteric species of lactic acid bacteria. Applied & Environmental Microbiology 46: 753–755.

    CAS  Google Scholar 

  • Wang, T.-T., and Lee, B. H. (1997). Plasmids in Lactobacillus. Critical Reviews in Biotechnology 17: 227–272.

    Article  CAS  Google Scholar 

  • Wei, M. Q., Rush, C. M., Norman, J. M., Hafner, L. M., Epping, R. J., and Timms, R. (1995). An improved method for the transformation of Lactobacillus strains using electroporation. Journal of Microbiological Methods 21:97–109.

    Article  Google Scholar 

  • West, C. A., and Warner, R J. (1985). Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Applied & Environmental Microbiology 50: 1319–1321.

    CAS  Google Scholar 

  • Wyckoff, H. A., Sandine, W. E., and Kondo, J. K. (1991). Transformation of dairy Leuconostoc using plasmid vectors from Bacillus, Escherichia, and Lactococcus hosts. Journal of Dairy Science 74: 1454–1460.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rixon, J.E., Warner, P.J. (2003). Introduction. In: Wood, B.J.B., Warner, P.J. (eds) Genetics of Lactic Acid Bacteria. The Lactic Acid Bacteria, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0191-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0191-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4959-4

  • Online ISBN: 978-1-4615-0191-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics