Skip to main content

Intracerebral Recordings of the Bereitschaftspotential and Related Potentials in Cortical and Subcortical Structures in Human Subjects

  • Chapter

Abstract

More than thirty-five years after its discovery, the Bereitschaftspotential (BP) remains a very productive research tool in both clinical and cognitive neurophysiology. Despite fruitful research results, there are several basic questions about BP that remain unanswered:

  1. 1.

    Where in the brain is BP generated?

  2. 2.

    What is the relation of BP to some other cerebral phenomena that share common features with BP, such as movement preparation and execution (contingent negative variation, CNV), and even changes in power during an identical testing protocol (event related desynchronization and synchronization, ERD/ERS)?

  3. 3.

    What physiological activity is represented by BP?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alarcon, G., Guy, C. N., Binnie, C. D., Walker, S. R., Elwes, R. D., Polkey, C. E. (1994) Intracerebral propagation of interiactal activity in partial epilepsy: implications for source localisation. J. Neurol. Neurosurg. Psychiatry 57 (4), 435–449.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G. E. (1994) Basal ganglia-thalamocortical circuits: their role in control of movements. J. Clinical. Neurophysiol. 11, 420–431.

    Article  CAS  Google Scholar 

  • Arezzo, J., Vaughan, Jr., H. G. (1975) Cortical potentials associated with voluntary movements in the monkey. Brain Research 88, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Bareš, M., Rektor, I. (1999) Basal ganglia are involved in the generation of auditory and visual evoked potential components - a SEEG study of a contingent negative variation paradigm. Clin. Neurophysiol. 110 (1), 220.

    Google Scholar 

  • Bauer, H., Korunka, Ch., Leodolter, M. (1993) Possible glial contribution in the electrogenesis of SPs. In: McCallum, W. C. and Curry, S. H., (Eds. ) Slow Potential Changes in the Human Brain, pp. 23–34. New York: Plenum Press.

    Google Scholar 

  • Beisteiner, R., Hoellinger, P., Lindinger, G., Lang, W., Berthoz, A. (1995) Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr. clin. Neurophysiol. 96, 183–93.

    CAS  Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A. G. M., Rockstroh, B. (1990) Slow Potentials of the Cerebral Cortex and Behavior. Phys. Rev. 70, 1–40.

    CAS  Google Scholar 

  • Brunia, C. H. M., Damen, E. J. P. (1988) Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroenceph. clin. Neurophysiol. 69, 234–243.

    Article  CAS  Google Scholar 

  • Chen, R., Gerloff, C., Hallett, M., Cohen, L. G. (1997) Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann. Neurol. 41 (2), 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Deecke, L. (1985) Cerebral potentials related to voluntary actions: parkinsonian and normal subjects. In: Delwaide PJ, Agnoli A., (Eds. ) Clinical Neurophysiology in Parkinsonism. Amsterdam, Elsevier 91–105.

    Google Scholar 

  • Dick, J. P. R., Rothwell, J. C., Day, B. L., Cantello, R., Buruma, O., Gioux, M., Benecke, R., Berardelli, A., Thompson, P. D., Marsden, C. D. (1989) The Bereitschaftspotential is abnormal in Parkinson’s disease. Brain 112, 233–344.

    Article  PubMed  Google Scholar 

  • Fève, A. P., Bathien, N., Rondot, P. (1991a) Evolution des potentiels corticaux lies au mouvements chez patients parkinsoniens, avant et apres traitement par la levodopa. Neurophysiol. Clin. 21, 105–119.

    Article  PubMed  Google Scholar 

  • Fève, A. P., Bathien, N., Rondot, P. (1991b) Les potentiels corticaux lies au mouvement de l’homme age. Neurophysiol. Clin. 21, 281–291.

    Article  PubMed  Google Scholar 

  • Fève, A., Bathien, N., Rondot, P. (1991) Evolution des potentiels corticaux liés au movement chez les patients parkinsoniens, avant et après traitement par la lévodopa. Neurophysiol. Clin. 21, 105–119.

    Article  PubMed  Google Scholar 

  • Fève, A. P. (1993) Origine sous corticale des potentials pre-moteurs (movement-related-potentials) chez l’homme. Thése de Doctorat. Université Paris 6. Paris.

    Google Scholar 

  • Frost, B. G., Neill, R. A., Fenelon, B. (1988) The determinants of the non-motoric CNV in a complex, variable foreperiod, information processing paradigm. Biol. Psychol. 27, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, J. M. (1984) Behavioral electrophysiology of the prefrontal cortex. TINS 408–414.

    Google Scholar 

  • Gemba, H., Sasaki, K. (1984) Distribution of Potentials Preceding Visually Initiated and Self-Paced Hand Movements in Various Cortical Areas of the Monkey. Brain Res. 306, 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Grünewald, G., Grünewald-Zuberbier, E., Netz, J., Hömberg, V., Sander, G. (1979) Relationships between the late component of the contingent negative variation and the Bereitschaftspotential. Electroenceph. clin. Neurophysiol. 46, 538–545.

    Article  PubMed  Google Scholar 

  • Haider, M., Knapp, E. G., Ganglberger, J. A. (1981) Event related slow (DC) Potentials in the Human Brain. Res. Physiol. Biochem. Pharmacol. 88, 125–197.

    Article  CAS  Google Scholar 

  • Ikeda, A., Luders, H. O., Burgess, R. C., Shibasaki, H. (1992) Movement-related potentials recorded from supplementary motor area and primary motor cortex. Brain 115, 1017–1043.

    Article  PubMed  Google Scholar 

  • Jahanshahi, M. and Frith, C. D. (1998) Willed action and its impairments. Cognitive Neuropsychology 15, 483–534.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber, H. H., Deecke, L. (1964) Hirnpotentialaenderung beim Menschen vor und nach Willkuerbewegungen, dargestellt mit Magnetbandspeicherung und Rueckwaertsanalyse. Pfluegers Archiv 281, 52.

    Google Scholar 

  • Kornhuber, H. H., Deecke, L. (1965) Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen den Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Archiv 284, 1–17.

    Article  CAS  Google Scholar 

  • Krams, M., Rushworth, M. F. S., Deiber, M-P., Frackowiak, R. S. J., Passingham, R. E. (1998) The preparation, execution and suppression of copied movements in the human brain. Exp. Brain Res. 120, 386–398.

    Article  PubMed  CAS  Google Scholar 

  • Kropotov, J. D. and Etlinger, S. C. (1999) Selection of actions in the basal ganglia-thalamocortical circuits: review and model. Intern. J. Psychophysiol. 31, 197–217.

    Article  CAS  Google Scholar 

  • Lamarche, M., Louvel, J., Buser, P., Rektor, I. (1995) Intracerebral recordings of slow potentials in a contingent negative variation paradigm: an exploration in epileptic patients. Electroenceph. clin. Neurophysiol. 95, 268–276.

    Article  PubMed  CAS  Google Scholar 

  • Lang, W., Hollinger, P., Eghker, A., Lindinger, G. (1994) Functional Localization of Motor Processes in the Primary and Supplementary Motor Areas. J. Clin. Neurophysiol. 11, 397–419.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B. I., Lüders, H., Lesser, R. P., Dinner, D. S., Morris, H. H. (1986) Cortical potentials related to voluntary and passive finger movements recorded from subdural electrodes in humans. Ann. Neurol. 20, 32–37.

    Article  PubMed  CAS  Google Scholar 

  • Libet, B., Wright, E. W. Jr, Gleason, C. A. (1982) Readiness-potentials preceding unrestricted “spontaneous” vs. pre-planed voluntary acts. Electroenceph. clin. Neurophysiol. 54, 322–335.

    Article  PubMed  CAS  Google Scholar 

  • Libet, B. (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav. Brain Sci. 8, 529–566.

    Article  Google Scholar 

  • Mauritz, K. H., Wise, S. P. (1986) Premotor cortex of the rhesus monkey: neuronal activity in anticipation of predictable environmental events. Exp. Brain Res. 61, 229–244.

    Article  PubMed  CAS  Google Scholar 

  • McCallum, W. C. (1975) Behavioural and clinical correlates of brain slow potential changes. Proc R Soc Med 68, 3–6.

    PubMed  CAS  Google Scholar 

  • McCallum, W. C. (1993) Human Slow Potential Research: A review. In: McCallum, W. C. and Curry, S. H., ((Eds. ) Slow Potential Changes in the Human Brain, pp. 1–11. New York: Plenum Press.

    Google Scholar 

  • Neshige, R., Lüders, H., Shibasaki, H. (1988) Recording of movement related potentials from scalp and cortex in man. Brain 111, 719–736.

    PubMed  Google Scholar 

  • Paus, T., Koski, L., Caramos, Z., Westbury, Ch. (1998) Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport 9 (9) 37–47.

    Article  Google Scholar 

  • Posner, M. I., Dehaene, S. (1994) Attentional networks. TINS 17, 75–79.

    PubMed  CAS  Google Scholar 

  • Price, C. J., Green, D. W., von Studnitz, R. (1999) A functional imaging study of translation and language switching. Brain 122, 2221–2235.

    Article  PubMed  Google Scholar 

  • Rektor, I., Fève, A., Buser, P., Bathien, N., Lamarche, M. (1994) Intracerebral recording of movement related readiness potentials: an exploration in epileptic patients. Electroenceph. clin. Neurophysiol. 90, 273–283.

    Article  CAS  Google Scholar 

  • Rektor, I., Švejdová, M. (1995) Spatiotemoporal analysis of interictal spikes. A stereoelectroencephalographic study. Neurophysiol. Clin. 25, 12–18.

    Article  PubMed  CAS  Google Scholar 

  • Rektor, I., Louvel, J., Lamarche, M. (1998) Intracerebral recording of potentials accompanying simple limb movements. A SEEG study in epileptic patients. Electroenceph. clin. Neurophysiol. 107, 277–286.

    Article  CAS  Google Scholar 

  • Rektor, I. (2000a) Long-lasting simultaneous activation of cortical and subcortical structures in movement preparation and execution. Clinical neurophysiology at the beginning of the 21st century. Suppl. Clin Neurophysiol. 53, 192–195.

    Article  CAS  Google Scholar 

  • Rektor, I. (2000b) Cortical activation in self-paced versus externally cued movements: a hypothesis. Parkinsonism and Related Disorders 6, 181 -184.

    Article  PubMed  Google Scholar 

  • Rektor, I., Bareš, M., Kaňovský, P., Kukleta, M. (2001a) Intracerebral recording of readiness potential induced by a complex motor task. Movement Disorders 16, 698–704.

    Article  PubMed  CAS  Google Scholar 

  • Rektor, I., Kaňovský, P., Bareš, M., Louvel, J., Lamarche, M. (2001b) Evoked potentials, ERP, CNV, readiness potential, and movement accompanying potential recorded from the posterior thalamus in human subjects. A SEEG study. Neurophysiologie clinique/Clinical Neurophysiology 31, 1–9.

    Google Scholar 

  • Rektor, I., Bareš, M., Kubová, D. (2001c) Movement related potentials in the basal ganglia: a SEEG readiness potential study. Clin Neurophysiol, in press

    Google Scholar 

  • Romo, R., Scarnati, E., Schultz, W. (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. II. Movement-related activity in the anterior striatum. Exp. Brain Res. 91, 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Ruchkin, D. S., Sutton, S., Mahafey, D., Glaser, J. (1986) Terminal CNV in the absence of motor response. Electroenceph. clin. Neurophysiol. 63, 445–463.

    Article  CAS  Google Scholar 

  • Sasaki, K., Gemba, H., Hashimoto, S., Mizuno, N. (1979) Influences of cerebellar hemispherectomy on slow potentials in the motor cortex preceding self-paced hand movements in the monkey. Neuroscience Letters 15, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki, H., Barrett, G., Halliday, A. M., Halliday, E. (1980) Components of the movement-related cortical potential and their scalp topography. Electroenceph. clin Neurophysiol. 49, 213–226.

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki, H., Barret, G., Halliday, E., Halliday, A. M. (1981) Cortical potentials associated with voluntary foot movement in man. Electroenceph. clin. Neurophysiol. 52, 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, W., Romo, R. (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. Exp. Brain Res. 91, 363–384.

    Article  PubMed  CAS  Google Scholar 

  • Singh, J., Knight, R. T., Rosenlicht, N., Korun, J. M., Beckley, D. J., Woods, D. L. (1992) Abnormal premovement brain potentials in schizophrenia. Schizophr. Res. 8 (1), 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Sochůrková, D., Rektor, I., Stančák, Jr., A. (2000) Intracranial recordings of readiness potential and event-related desynchronisation in hand and foot movements. Clin. Neurophysiol. 111 (1), 85.

    Google Scholar 

  • Stančák, Jr., A., Riml, A., Pfurtscheller, G. (1996) The effects of external load on movement-related changes of the sensorimotor EEG rhythms. Electroenceph. clin. Neurophysiol. 102, 495–504.

    Google Scholar 

  • Streitová, H., Rektor, I., Kubová, D., Bareš, M., Hortová, H. (1999) Activity of the gyrus cinguli in the movement preparation and performance and in the cognitive functions. A SEEG study of readiness potentials, movement accompanying potentials, CNV and P3. Suppl. Parkinsonism & Related Disord. 5, 122.

    Google Scholar 

  • Vidailhet, M., Atchison, P., Stocchi, F., Thompson, P. D., Rothwell, J. C., Marsden, C. D. (1995) The Bereitschaftspotential preceding stepping in patients with isolated gait ignition failure. Movement Disord. 10, 18–21.

    Article  PubMed  CAS  Google Scholar 

  • Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, C., Cohen, J. (1964) The contingent negative variation: an electro-cortical sign of sensorimotor association in man. Electroenceph. clin. Neurophysiol. 17, 340–344.

    Google Scholar 

  • Yazawa, S., Ikeda, A., Kunieda, T., Ohara, S., Mima, T., Nagamine, T., Taki, W., Kimura, J., Hori, T., Shibasaki, H. (2000) Human presupplementary motor area is active before voluntary movement: subdural recording of Bereitschaftspotential from medial frontal cortex. Exp. Brain Res. 131 (2), 165–177.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rektor, I. (2003). Intracerebral Recordings of the Bereitschaftspotential and Related Potentials in Cortical and Subcortical Structures in Human Subjects. In: Jahanshahi, M., Hallett, M. (eds) The Bereitschaftspotential. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0189-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0189-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4958-7

  • Online ISBN: 978-1-4615-0189-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics