CNV and SPN: Indices of Anticipatory Behavior

  • Cornelis H. M. Brunia


In the title of the first report about the Contingent Negative Variation (CNV) two things are suggested: The CNV is a sign of “sensori-motor association” and the CNV is an index for “expectancy” (Walter et al., 1964). In other words, the CNV reflects processes, which are, at first sight, quite different from the processes discussed in the other chapters in this book. Why then is it important to add a “deviant” chapter to this book? There are two reasons. First, the CNV is also a movement-preceding negativity (MPN), just as the Readiness Potential (RP). The RP reflects processes involved in the preparation of voluntary movements, and the CNV reflects processes involved in the preparation of signaled movements. In other words the RP and the CNV are both reflections of anticipatory behavior, at least as far as the motor system is involved. Moreover it doesn’t seem too difficult to put up a case for the view that most of our motor activity is elicited by the presence of some kind of stimuli, rather than being “voluntary”. This being a sufficient reason for a chapter on the CNV, there is a second reason. Anticipatory behavior is not restricted to the motor system; it involves attention to the surrounding and to stimuli, which are relevant for our ongoing behavior. This becomes clear in a simple paradigm such as the forewarned reaction time task, used to elicit a CNV. In such a paradigm, a warning signal (WS) alerts the subject to an upcoming imperative signal (RS) to which the subject has to respond, e. g. by pressing a button. The consequence is that the CNV is a MPN, confounded by activity related to anticipatory attention for the response signal (RS). This causes serious difficulty for the interpretation of the CNV. I will discuss later on a paradigm in which Separation in time of motor preparation and anticipatory attention is possible. The latter function is reflected in a second category of anticipatory slow waves: the Stimulus Preceding Negativity (SPN).


Slow Wave Clinical Neurophysiology Contingent Negative Variation Late Wave Motor Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolphs, R., Tranel, D., Damasio, H. and Damasio, A. R. (1995). Fear and the human amygdala. Journal of Neuroscience, 15, 5879–5891.PubMedGoogle Scholar
  2. Al-Falahe, N. A., Nagaoka, M. and Vallbo, A. B. (1990). Response profiles of human muscle afferents during active finger movements. Brain, 113, 325–346.PubMedCrossRefGoogle Scholar
  3. Barrett, S. E. and Rugg, M. D. (1989a). Asymmetries in event-related potentials during rhyme matching: confirmation of the null effects of handedness. Neuropsychologia, 27, 539–548.PubMedCrossRefGoogle Scholar
  4. Barrett, S. E. and Rugg, M. D. (1989b). Event-related potentials and the semantic matching of faces. Neuropsychologia, 27, 913–922.PubMedCrossRefGoogle Scholar
  5. Barrett, S. E. and Rugg, M. D. (1990). Event-related potentials and the phonological matching of picture names. Brain and Language, 38, 424–437.PubMedCrossRefGoogle Scholar
  6. Besrest, A. and Requin, J. (1973). Development of expectancy wave and the time course of preparatory set in a simple reaction time task. In: Kornblum, S. (Ed. ): Attention and Performance IV, pp. 209–219. New York: Academic Press.Google Scholar
  7. Böcker, K. B. E., Brunia, C. H. M., and van den Berg-Lenssen, M. M. C. (1994). A spatiotemporal dipole model of the Stimulus Preceding Negativity (SPN) prior to feedback stimuli. Brain Topography, 7, 71–88.PubMedCrossRefGoogle Scholar
  8. Böcker, K. B. E. & Van Boxtel, G. J. M. 1997. Stimulus-preceding negativity: a class of anticipatory slow potentials. In: van Boxtel, G. J. M and Böcker, K. B. E. (Eds. ) Brain and Behavior: Past, Present, and Future, pp. 105–116. Tilburg: Tilburg University Press.Google Scholar
  9. Birbaumer, N., Roberts, L. E., Lutzenberger, W., Rockstroh, B., and Elbert, T. (1992). Area-specific self-regulation of cortical slow potentials on the sagittal midline and its effects on behavior. Electroencephalography and Clinical Neurophysiology, 84, 353–361.PubMedCrossRefGoogle Scholar
  10. Brunia, C. H. M. (1980). What is wrong with legs in motor preparation? In: Kornhuber, H. H. and Deecke, L. (Eds. ) Progress in Brain Research, volume 54, Motivation, Motor and Sensory Processes of the Brain, pp. 232–236. Amsterdam: Elsevier.Google Scholar
  11. Brunia, C. H. M. (1988). Movement and stimulus preceding negativity. Biological Psychology, 26, 165–178.PubMedCrossRefGoogle Scholar
  12. Brunia, C. H. M. (1993). Stimulus preceding negativity: arguments in favour of non-motoric slow waves. In: McCallum, W. C and Curry, S. H. (Eds., ) Slow Potential Changes in the Human Brain, pp. 147–161. New York: Plenum Press.Google Scholar
  13. Brunia, C. H. M. (1999). Neural aspects of anticipatory behavior. Acta Psychologica, 101, 213–242.PubMedCrossRefGoogle Scholar
  14. Brunia, C. H. M. and Damen, E. J. P. (1988). Distribution of slow potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalography and Clinical Neurophysiology, 69, 234–243.PubMedCrossRefGoogle Scholar
  15. Brunia, C. H. M. and Vingerhoets, A. J. J. M. (1980), CNV and EMG preceding a plantar flexion of the foot. Biological Psychology, 11, 181–191.PubMedCrossRefGoogle Scholar
  16. Brunia, C. H. M. and Vingerhoets, A. J. J. M. (1981), Opposite hemisphere differences in movement related potentials preceding foot and finger flexions. Biological Psychology, 13, 261–269.PubMedCrossRefGoogle Scholar
  17. Brunia, C. H. M., Scheirs, J. G. M. and Haagh, S. A. V. M. (1982). Changes of Achilles tendon reflex amplitudes during a fixed foreperiod of for seconds. Psychophysiology, 19, 63–70.PubMedCrossRefGoogle Scholar
  18. Brunia, C. H. M., Haagh, S. A. V. M. & Scheirs, J. G. M. (1985). Waiting to respond. Electrophysiological measurements in man during preparation for a voluntary movement. In: Heuer, H, Kleinbeck, U. and Schmidt, K. H. (Eds. ) Motor Behavior: Programming, control, and acquisition, pp. 35–78. Berlin: Springer Verlag.Google Scholar
  19. Brunia, C. H. M., de Jong, B. M., van den Berg-Lenssen, M. M. A. C. & Paans, A. M. J. (2000). Visual feedback about time estimation is related to right hemisphere activation measured by PET. Experimental Brain Research, 130, 328–337.CrossRefGoogle Scholar
  20. Coles, M. G. H., Gratton, G. and Donchin, E. (1988). Detecting early communication: using measures of movement-related potentials to illuminate human information processing. Biological Psychology, 26, 69–89.PubMedCrossRefGoogle Scholar
  21. Connor, W. H. & Lang, P. J. (1969). Cortical slow wave and cardiac rate responses in stimulus orientation and reaction time conditions. Journal of Experimental Psychology, 82, 310–320.PubMedCrossRefGoogle Scholar
  22. Chwilla, D. J., & Brunia, C. H. M. (1991). Event-Related potentials to different feedback stimuli. Journal of Psychophysiology,28, 123–132.CrossRefGoogle Scholar
  23. Cui, R. Q., Egker, A., Huter, D., Lang, W., Lindinger, G. and Deecke, L. (2000) High-resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task. Clinical Neurophysiology, 111, 1847–1860.PubMedCrossRefGoogle Scholar
  24. Damen, E. J. P. & Brunia, C. H. M. (1987). Changes in heart rate and slow potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiology, 24, 700–713.PubMedCrossRefGoogle Scholar
  25. Damen, E. J. P. & Brunia, C. H. M. (1994). Is a stimulus-conveying task relevant information a sufficient condition to elicit stimulus-preceding negativity (SPN)? Psychophysiology, 31, 129–139.PubMedCrossRefGoogle Scholar
  26. Davis, M., Walker, D. L. and Lee, Y. (1999) Neurophysiology and neuropharmacolgy of startle and its affective modulation. In: Dawson, M. E., Schell, A. M. and Böhmelt, A. H. (Eds. ) Startle Modification. pp. 95–113. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Dawson, M. E., Schell, A. M. and Böhmelt, A. H. (1999). Startle Modification. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Deecke, L. and Kornhuber, H. (1977). Cerebral potentials and the initiation of voluntary movement. In: Desmedt, J. E. (Ed. ) Attention, Voluntary Contraction and Slow Potential Shifts, pp. 132–150. Basel: Karger.Google Scholar
  29. De Jong, R., Wierda, M., Mulder, G and Mulder, L. J. M. (1988). Use of partial information in responding. Journal of experimental psychology: Human perception and performance. 14, 682–692.PubMedCrossRefGoogle Scholar
  30. Dick, J. P. R., Rothwell, J. C., Day, B. L., Cantello, R., Buruma, 0., Gioux, M., Benecke, R., Bernardelli, A., Thompson, P. D., and Marsden, C. D. (1989). The Bereitschaftspotential is abnormal in Parkinson’s disease. Brain, 112, 233–244.PubMedCrossRefGoogle Scholar
  31. Donchin, E., Gerbrandt, L. A., Leiffer, L. and Tucker, L. (1972). Is the contingent negative variation contingent upon a motor response? Psychophysiology, 9, 178–188.PubMedCrossRefGoogle Scholar
  32. Foit, A. B., Grözinger, B and Kornhuber, H. H. (1982). Brain potential differences related to programming, monitoring and outcome of aimed and non-aimed fast and slow movements to a visual target: The movement-monitoring potential (MMP) and the task outcome evaluation potential (TEP). Neuroscience, 7, 571.Google Scholar
  33. Fuster JM (1997) The prefrontal cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe. 3rd ed. Raven Press: New York.Google Scholar
  34. Gaillard, A. W. K. and van Beijsterveld, C. E. M. (1991). Slow brain potentials elicited by a cue signal. Journal of Psychophysiology, 5, 337–347.Google Scholar
  35. Grünewald, G., & Grünewald-Zuberbier, E. (1983). Cerebral potentials during voluntary ramp movements in aiming tasks. In: Gaillard, A. W. K. and Ritter, W. (Eds. ), Tutorials in ERP research: Endogenous components, pp. 311–327. Amsterdam: Elsevier.CrossRefGoogle Scholar
  36. Grünewald, G., Grünewald-Zuberbier, E., Hömberg, V., Schuhmacher, H. (1984). Hemispheric asymmetry of feedback-related slow negative potential shifts in a positioning movement task. In: Karrer, R. and Tueting, P., (Eds. ) Brain and Information: Event-related potentials, pp. 470–476. New York: New York Academy of Sciences.Google Scholar
  37. Hamano, T., Lüders, H. O., Ikeda, A., Collura, T. F., Comair, Y. G. and Shibasaki, H. (1997). The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalography and Clinical neurophysiology, 104, 257–268.PubMedCrossRefGoogle Scholar
  38. Heil, M., Rösler, F. and Henninghausen, E. (1996). Topographically distinct cortical activation in episodic long-term memory: The retrieval of spatial versus verbal material. Memory and Cognition, 24, 777–795.CrossRefGoogle Scholar
  39. Heil, M., Rösler, F. and Henninghausen, E. (1997). Topography of brain electrical activity dissociates the retrieval of spatial versus verbal information from episodic long-term memory in humans. Neuroscience Letters, 222, 45–48.PubMedCrossRefGoogle Scholar
  40. Hillyard S. A. (1973). The CNV and human behavior. Electroencephalography and Clinical Neurophysiology. Supplement 33, 161–171.Google Scholar
  41. Hultin, L., Rossini, P. Romani, G. L., Högstedt, P, Tecchio, F. and Pizella, V. (1996). Neuromagnetic localization of the late component of the contingent negative variation. Electroencephalography and Clinical Neurophysiology, 98, 435–438.PubMedCrossRefGoogle Scholar
  42. Ikeda, A., Shibasaki, H., Nagamine, T., Terada, K., Kaji, R., Fukuyama, H. and Kimura, J. (1994). Dissociation between contingent negative variation and Bereitschaftspotential in a patient with cerebellar efferent lesion. Electroencephalography and Clinical Neurophysiology, 90, 359–364.PubMedCrossRefGoogle Scholar
  43. Ikeda, A., Shibasaki, H., Kaji, R., Terada, K., Nagamine, T., Honda, M. and Kimura, J (1997). Dissociation between contingent negative variation and Bereitschaftspotential in a patient with Parkinsonism. Electroencephalography and Clinical Neurophysiology, 102, 142–151.PubMedCrossRefGoogle Scholar
  44. Jahanshahi, M., Jenkins, I. H., Brown, R. G., Marsden, C. D., Passingham, R. E. and Brooks, D. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.PubMedCrossRefGoogle Scholar
  45. Jarvilehto, T. and Frühstorfer, H. (1970). Differentation between slow cortical potentials associated with motor and mental acts. Experimental Brain Research, 11, 309–317.CrossRefGoogle Scholar
  46. Kitamura, J-I, Shibasaki, H. and Kondo, T. (1993). A cortical slow potential is larger before an isolated movement of a single finger than simultaneous movement of two fingers. Electroencephalography and clinical Neurophysiology, 86, 252–258.PubMedCrossRefGoogle Scholar
  47. Klein, C, Berg, P., Cohen, R., Elbert, T. and Rockstroh, B. (1993). Topography of CNV and PINV in schizophrenic patients and healthy subjects during a delayed matching-to-sample task. Journal of Psychophysiology, 11, 322–334.Google Scholar
  48. Kristeva, R., Jankov, E. and Gantchev, G. (1987). Differences in slow potentials in Bereitschaftspotential and Contingent Negative Variation. In: Johnson Jr., R., Rohrbaugh J. W. and Parasuraman R., (Eds. ) Current Trends in Event-related Potential Research. EEG supplement 40, 41–46.Google Scholar
  49. Kutas, M. and Donchin, E. (1977). The effects of handedness, responding hand, response force, and asymmetry of readiness potential. In: Desmedt J. E. (Ed. ) Attention, Voluntary Contraction and Slow Potential Shifts, pp 189–210. Basel: Karger.Google Scholar
  50. Kutas, M. and Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205.PubMedCrossRefGoogle Scholar
  51. Lacey, J. I. and Lacey, B. C. (1973). Experimental association and dissociation of phasic bradycardia and vertex-negative wave: A psychophysiological study of attention and response intention. In: McCallum, W. C. and Knott, J. R. (Eds. ) Event-related Slow Potentials of the Brain. Their relations to behaviour, pp. 87–94. Amsterdam: Elsevier.Google Scholar
  52. Lacey, J. I. and Lacey, B. C. (1974). Some autonomic-central nervous system interrelationships. In: Black, P. (Ed. ) Physiological correlates of emotion. pp. 205–227. New York: Academic Press.Google Scholar
  53. Lang, P. J., Bradley, M. M. & Cuthbert, B. N. (1990). Emotion, attention and the startle reflex. Psychological Review, 1, 377–395.CrossRefGoogle Scholar
  54. Lang, W., Lang, M., Heise, B. Deecke, L. & Kornhuber, H. H. (1984). Brain potentials related to voluntary hand tracking, motivation and attention. Human Neurobiology, 3, 235–240.PubMedGoogle Scholar
  55. Loveless, N. E. (1979). Event-related slow potentials of the brain as expressions of orienting function. In H. D. Kimmel, E. H van O1st & J. F. Orlebeke (Eds. ) The Orienting Reflex in Humans, pp. 77–100. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers.Google Scholar
  56. Loveless, N. E. and Sanford, A. J. (1974). Slow potential correlates of preparatory set. Biological Psychology, 1, 303–314.PubMedCrossRefGoogle Scholar
  57. Low, M. D. and McSherry, J. W. (1968). Further observations of psychological factors involved in CNV genesis. Electroencephalography and Clinical Neurophysiology, 25, 203–207.PubMedCrossRefGoogle Scholar
  58. Kornhuber, H. H. & Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Archiv, 284, 1–17.CrossRefGoogle Scholar
  59. Macar, F. and Besson, M. (1985). Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biological Psychology, 21, 293–307.PubMedCrossRefGoogle Scholar
  60. Macar, F. and Besson, M. (1985). Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biological Psychology, 21, 293–307.PubMedCrossRefGoogle Scholar
  61. Macar, F. and Vitton, N., 1979. Contingent negative variation and accuracy of time estimation: a study in cats. Electroencephalography and Clinical Neurophysiology, 47, 213–218.PubMedCrossRefGoogle Scholar
  62. Macar, F. and Vitton, N., 1982. An early resolution of contingent negative variation in time discrimination. Electroencephalography and Clinical Neurophysiology, 54, 426–435.PubMedCrossRefGoogle Scholar
  63. Macar, F., Vidal, F. and Bonnet, M., 1990. Laplacian derivations of CNV in time Programming. In: Brunia, C. H. M., Gaillard A. W. K and Kok, A. (Eds. ), Psychophysiological Brain Research, Volume I, pp. 69–77. Tilburg: Tilburg University Press.Google Scholar
  64. McAdam, D. W., Knott, J. R. and Rebert, C. S. (1969). Cortical slow potential changes in man related to inter-stimulus interval. Psychophysiology, 5, 349–358.PubMedCrossRefGoogle Scholar
  65. McCallum, W. C. (1988). How many separate processes constitute the CNV? In: McCallum, W. C., Zappoli, R. and Denoth, F. Cerebral Psychophysiology: Studies in event-related potentials. EEG supplement 38. pp. 192–196. Amsterdam: Elsevier Science Publishers.Google Scholar
  66. McCallum, W. C. (1988). Potentials related to expectancy, preparation and motor activity. In Picton T. W. (Ed. ), EEG Handbook: Vol. 3. Human Event-Related Potentials, pp. 427–533. Amsterdam: Elsevier.Google Scholar
  67. McCarthy, G. and Donchin, E. (1978). Brain potentials associated with structural and functional visual matching. Neuropsychologia, 16, 571–585.PubMedCrossRefGoogle Scholar
  68. MacKay, D. M. and Bonnet, M. (1990). CNV, stretch reflex and reaction time correlates of preparation for movement direction and force. Electroencephalography and Clinical Neurophysiology, 56, 696–698.CrossRefGoogle Scholar
  69. McCallum, W. C. (1988). Potentials related to expectancy, preparation and motor activity. In: Picton, T. W. (Ed. ) Human event-related potentials. EEG handbook (Revised series, Volume 3), pp. 427–534. Amsterdam: Elsevier Science Publishers.Google Scholar
  70. Niki, H. and Watanabe, M. (1979). Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Research, 171, 213–224.PubMedCrossRefGoogle Scholar
  71. Niemi, P. and Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89, 133–162.CrossRefGoogle Scholar
  72. Öhman, A., Flykt, A. and Lundqvist, D. (2000). In: Lane R. D. and Nadel L. (Eds. ) The Cognitive Neuro- science of Emotion. pp. 296–327. New York: Oxford University Press.Google Scholar
  73. Passingham, R. E. (1987). Two cortical systems for directing movement. In: Motor areas of the cerebral cortex. Ciba Foundation Symposium, 132, pp. 151–161. Chichester: John Wiley.Google Scholar
  74. Passingham, R. E. (1993). The frontal Lobes and Voluntary Action. Oxford: Oxford University Press.Google Scholar
  75. Praamstra, P., Meyer, A. S., Cools, A. R., Horstink, M. W. I. M. and Stegeman, D. F. (1996). Movement preparation in Parkinson’s disease: time course and distribution of movement-related potentials in a movement-precuing task. Brain, 119, 1689–1704.PubMedCrossRefGoogle Scholar
  76. Pulvermüler, F., Lutzenberger, W, Müller, V., Mohr, B., Dichgans, J. and Birbaumer, N. (1996). P3 and the contingent negative variation in Parkinson’s disease. Electroencephalography and Clinical Neuro-physiology, 98, 456–467.CrossRefGoogle Scholar
  77. Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A, Cox, R. W. and Binder, J. R. (1997). Distributed neural systems underlying the timing of movements. Neuroimage, 5, 13.CrossRefGoogle Scholar
  78. Rebert, C. S. (1977). Intracerebral slow potential changes in monkeys during the foreperiod of reaction time. In: Desmedt, J. E (Ed. ) Attention, Voluntary Contraction and Slow Potential Shifts, pp 242–253. Basel: Karger.Google Scholar
  79. Requin, J., Brener, J. and Ring, C. (1991). Preparation for action. In: Jennings, J. R. and Coles, M. G. H. (Eds. ) Handbook of Cognitive Psychophysiology. pp. 357–448. Chichester: John Wiley and Sons.Google Scholar
  80. Rizolatti, G., Luppino, G. and Matelli, M. (1996). The classic supplementary motor area is formed by two independent areas. In: Lüders, H. O. Advances in Neurology, Vol. 70, Supplementary Sensorimotor Area pp. 45–56. Philadelphia: Lippincott-Raven Publishers.Google Scholar
  81. Rockstroh, B., Elbert, T. and Lutzenberger, W. (1989). Slow potentials of the brain and behavior: is there a non-motor CNV? Psychophysiology, 4A, S1.Google Scholar
  82. Rohrbaugh, J. & Gaillard, A. W. K. (1983). Sensory and motor aspects of the Contingent Negative Variation. In: Gaillard A. W. K and Ritter W. (Eds. ) Tutorials in Event-related Potentials Research: Endogenous Components, pp. 269–310. Amsterdam: North-Holland.CrossRefGoogle Scholar
  83. Roland, P. E., Skinhoj, E., Larsen, B and Lassen, N. A. (1980). The role of different cortical areas in the organization of voluntary movements in man. A regional cerebral blood flow study. In Ingvar, D. H. and Lassen, N. A. (Eds. ) Cerebral Function, Metabolism and Circulation. Acta Neurologica Scandinavica, 56, 542–543.Google Scholar
  84. Rosenbaum, D. A. (1985). Motor programming: A review and scheduling theory. In: Heuer, H, Kleinbeck, U. and Schmidt, K. H. (Eds. ) Motor Behavior: Programming, control, and acquisition, pp. 1–35. Berlin: Springer Verlag.Google Scholar
  85. Rösler, F., Heil, M. and Henninghausen, E. (1995). Distinct cortical activation patterns during long-term memory retrieval of verbal, spatial and color information. Journal of Cognitive Neuroscience, 7, 51–65.CrossRefGoogle Scholar
  86. Rösler, F., Heil, M. and Henninghausen, E. (1995). Exploring memory functions by means of brain electrical topography: a review. Brain Topography, 7, 301–313.PubMedCrossRefGoogle Scholar
  87. Rösler, F., Pechmann, T., Streb, J., Röder and Henninghausen, E. (1998). Parsing sentences in a language with varying word order: word-by-word variations of processing demands are revealed by event-related brain potentials. Journal of Memory and Language, 38, 150–176.CrossRefGoogle Scholar
  88. Ruchkin, D. S., Sutton, S. Mahaffey, D. & Glaser, J. (1986). Terminal CNV in the absence of motor response. Elec-troencephalography and Clinical Neurophysiology, 63, 445–463.CrossRefGoogle Scholar
  89. Ruchkin, D. S., Johnson Jr., R., Canoune, H and Ritter, W. (1992) Distinctions and similarities among working memory processes: an event-related potential study. Cognitive Brain Research, 1, 53–66.PubMedCrossRefGoogle Scholar
  90. Ruchkin, D. S., Canoune H. L., Johnson Jr., R., and Ritter, W. (1995). Working memory and preparation elicit different patterns of slow wave event-related potentials. Psychophysiology, 32, 399–410.PubMedCrossRefGoogle Scholar
  91. Rugg, M. D. (1995). ERP studies of memory. In Rugg, M. D. and Coles, M. G. H. (Eds. ) Electrophysiology of Mind, pp. 132–170. Oxford: Oxford University Press.Google Scholar
  92. Sasaki, K., Gemba, H., Hashimoto, S. and Mizuno, N. (1979). Influences of cerebellar hemispherectomy on slow potentials in the motor cortex preceding self-paced hand movements in the monkey. Neuroscience Letters, 15, 23–28.PubMedCrossRefGoogle Scholar
  93. Sasaki, K. and Gemba, H. (1991). Cortical potentials associated with voluntary movements in monkeys. In: Brunia, C. H. M, Mulder G. and Verbaten, M. N. (Eds. ) Event-related Brain Research, pp. 80–96. Amsterdam: Elsevier.Google Scholar
  94. Scheirs, J. G. M. and Brunia, C. H. M. (1985). Achilles tendon reflexes and surface EMG activity during anticipation of a significant event and preparation for a voluntary movement. Journal of Motor Behavior, 17, 96–109.PubMedGoogle Scholar
  95. Shibasaki, H., Shima, F. and Kuroiwa, Y. (1978). Clinical studies of the movement-related cortical potential (MP) and the relationship between the dentato-rubro-thalamic pathway and the readiness potential (RP). Journal of Neurology, 219, 15–25.PubMedCrossRefGoogle Scholar
  96. Shibasaki, H., Barrett, G., Neshige, R., Hirata, I. & Tomoda, H. (1986). Volitional movement is not preceded by cortical slow negativity in cerebellar dentate lesion in man. Brain Research, 368, 361–365.PubMedCrossRefGoogle Scholar
  97. Simons, R. F. (1988). Event-related slow brain potentials: a perspective from ANS psychophysiology. In: Ackles, P. I. Jennings J. R. and. Coles, M. G. H (Eds. ) Advances in Psychophysiology, Volume 3, pp. 223–267. Greenwich, Connecticut: JAI Press.Google Scholar
  98. Simons, R. F., Öhman, A. and Lang, P. J. (1979). Anticipation and response set: cortical, cardiac and electro-dermal correlates. Psychophysiology, 16, 222–233.PubMedCrossRefGoogle Scholar
  99. Tychner, W. H. (1954). Recent studies of simple reaction time. Psychological Bulletin, 51, 128–149.CrossRefGoogle Scholar
  100. Ulrich, R., Leuthold, H. and Sommer, W. (1998). Motor programming of response force and movement direction. Psychophysiology, 35, 721–728.PubMedCrossRefGoogle Scholar
  101. Vallbo, A. B. (1974). Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiologica Scandinavica, 90, 319–336PubMedCrossRefGoogle Scholar
  102. Van den Bosch, R. J. (1983). Contingent negative variation: components and scalp distribution in psychiatric patients. Biological Psychiatry, 19, 963–972.Google Scholar
  103. Van Boxtel, G. and Brunia, C. H. M. (1994). Motor and non-motor aspects of slow brain potentials. Biological Psychology, 38, 35–51.Google Scholar
  104. Van Boxtel, G. and Brunia, C. H. M. (1994). Motor and non-motor components of the contingent negative variation. International Journal of Psychophysiology, 17, 269–279.PubMedCrossRefGoogle Scholar
  105. Verleger, R., Wascher, E., Wauschkuhn, B., Jaskowski, P., Allouni, B., Trillenberg, P. and Wessel, K. (1999). Consequences of altered cerebellar input for the cortical regulation of motor coordination, as reflected in EEG potentials. Experimental Brain Research, 127, 409–422.CrossRefGoogle Scholar
  106. Vidal, F., Bonnet, M. and Macar, F. (1995). Programming of duration of a motor sequence: role of the primary and supplementary motor areas in man. Experimental Brain Research, 106, 339–350.CrossRefGoogle Scholar
  107. Wagner, M., Rendtorff, N., Kathmann, N. and Engel, R. R. (1996). CNV, PINV and probe-evoked potentials in schizophrenics. Electroencephalography and Clinical Neurophysiology, 98, 130–143.PubMedCrossRefGoogle Scholar
  108. Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C. & Winter, A. L. 1964. Contingent Negative Variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 203, 380–384.PubMedCrossRefGoogle Scholar
  109. Wiesendanger, M., Hummelsheim, H., Bianchetti, M, Chen, D. F., Hyland, B., Maier, V. and Wiesendanger, V. (1987). Input and output organization of the supplementary motor area. In: Motor areas of the cerebral cortex. CIBA Foundation Symposium 132, pp. 40–53. Chichester, John Wiley and Sons.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Cornelis H. M. Brunia
    • 1
  1. 1.Department of PsychologyTilburg UniversityNetherlands

Personalised recommendations