Advertisement

A Novel Neuromodulator in Basal Ganglia

  • M. Clara Sañudo-Peña
Part of the Advances in Behavioral Biology book series (ABBI, volume 54)

Abstract

Cannabinoids are a family of compounds that naturally occur in the marihuana plant(Cannabis sativa)and produce their effects through recently cloned G-coupled cannabinoid receptors (Matsuda et al. 1990; Munro et al. 1993). Of the myriad of physiological actions of cannabinoids, the motor effects seem to be mediated by the neural CB1 cannabinoid receptor (Rinaldi-Carmona et al. 1994, Compton et al. 1996). In general, activation of CB1 receptors by cannabinoid agonists inhibits neurotransmission through various mechanisms: by inhibition of adenylate cyclase thus decreasing the cellular levels of cAMP (Howlett et al 1995), by activation of K+ channels thus decreasing the excitability of the cell (Deadwyler et al. 1993), and by inhibition of N/Q Ca2+ channels thus inhibiting neurotransmitter release (Mackie et al 1992).

Keywords

Basal Ganglion Globus Pallidus Subthalamic Nucleus Contralateral Rotation Entopeduncular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin R.L., Young A.B., Penney J.B. 1989. The functional anatomy of basal ganglia disorders, Trends Neurosci, 12: 366–375.PubMedCrossRefGoogle Scholar
  2. Compton D.R., Aceto M.D., Lowe J., Martin BR. 1996. In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of D9-tetrahydrocannabinol-induced responses and apparent agonist activity. J.Pharm.Exp.Ther. 277:586–594.Google Scholar
  3. Deadwyler S.A., Hampson R.E., Bennett B.A., Edwards T.A., Mu J., Pacheco M.A., Ward S.J., Childers S.R. 1993. Cannabinoids modulate potassium current in culture hippocampal neurons. Receptors Channels, 1: 121–134.PubMedGoogle Scholar
  4. DeLong MR. Primate models of movement disorders of basal ganglia origin. 1990. Trends Neurosci., 13: 281–285.PubMedCrossRefGoogle Scholar
  5. Graybiel A.M. Neurotransmitters and neuromodulators in the basal ganglia. 1990. Trends Neurosci., 13: 244–253.PubMedCrossRefGoogle Scholar
  6. Herkenham M., A. B. Lynn, B.R. de Costa, E. K Richfield. 1991a. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res., 547: 267–274.CrossRefGoogle Scholar
  7. Herkenham M., A.B. Lynn, M.R. Johnson, L.S. Melvin, B.R. de Costa, K.C. Rice. 1991b. Characterization and localization of a cannabinoid receptor in rat brain: a quantitative in vitro autoradiographic study. Journal of Neuroscience, 11: 563–583.Google Scholar
  8. Howlett A.C. Pharmacology of cammabinoid receptors. 1995. Ann. Rev. Pharmacol. Toxicol., 35: 607–634.CrossRefGoogle Scholar
  9. Kinoshita H, Hasegawa T, Kameyama T, Yamamoto I, Nabeshima T. 1994. Competitive NMDA antagonists enhance the catalepsy induced by delta 9-tetrahydrocannabinol in mice. Neurosci. Lett., 174: 101–104.Google Scholar
  10. Mackie K., Hille B. 1992. Cannabinoid inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc. Nail. Acad. Sci., 89: 3825–3829.CrossRefGoogle Scholar
  11. Mailleux P., J. J. Vanderhaeghen. 1992. Distribution of neuronal cannabinoid receptor in the adult rat brain: A comparative receptor binding radioautography and in situ hybridization histochemistry. Neurosci., 48: 655–688.CrossRefGoogle Scholar
  12. Matsuda L.A., Lolait SJ., Brownstein M., Young A., Boner T.I. 1990. Structure of a cannabinoid receptor and functional expression of the cloned cDNA, Nature, 346: 561–564.PubMedCrossRefGoogle Scholar
  13. Miller A., Safiudo-Peña M.C., Walker J.M. 1998. Ipsilateral turning behavior induced by unilateral microinjections of a cannabinoid into the rat subthalamic nucleus. Brain Res., 793: 7–11.PubMedCrossRefGoogle Scholar
  14. Miller A., J. M. Walker. 1995. Effects of a cannabinoid on spontaneous and evoked neuronal activity in the substantia nigra pars reticulata. Eur. J. Pharmacol., 279: 179–185.PubMedCrossRefGoogle Scholar
  15. Miller A., J. M. Walker. 1996. Electrophysiological effects of a cannabinoid on neural activity in the globus pallidus. Eur. J. Pharmacol., 304: 29–35.PubMedCrossRefGoogle Scholar
  16. Munro S., Thomas K.L., Abu-Shaar M. 1993. Molecular characterization of a peripheral receptor for cannabinoids, Nature, 365: 61–65.PubMedCrossRefGoogle Scholar
  17. Pertwee R.G. Wickens A.P 1991. Enhancement by chlordiazepoxide of catalepsy induced in rats by intravenous or intrapallidal injections of enantiomeric cannabinoids, Neuropharmacology, 30: 237–244.PubMedCrossRefGoogle Scholar
  18. Richfield E.K., Herkenham M. 1994. Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus.Ann. Neurol., 36: 577–84.PubMedCrossRefGoogle Scholar
  19. Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G Caput D, et al. 1994. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett., 350: 240–244.PubMedCrossRefGoogle Scholar
  20. Robledo E, Feger J. 1991. Acute monoaminergic depletion in the rat potentiates the excitatory effect of the subthalamic nucleus in the substantia nigra pars reticulata but not in the pallidal complex. J. Neural. Transm., 86: 115–126.CrossRefGoogle Scholar
  21. Romero J., de Miguel R., García-Palomero E., Fenández-Ruiz J.J., Ramos J.A. 1995. Time-course of the effects of anandamide, the putative endogenous cannabinoid receptor ligand, on extrapyramidal function. Brain Res., 694: 223–232.PubMedCrossRefGoogle Scholar
  22. Sañudo-Peña M.C., Patrick S.L., Patrick R.L., Walker J.M. 1996. Effects of intranigral cannabinoids on rotational behavior in rats: interactions with the dopaminergic system, Neurosci. Lett. 206: 21–24.Google Scholar
  23. Sañudo-Peña M.C., Walker J.M. 1997. Role of the subthalamic nucleus on cannabinoid actions in the substantia nigra of the rat, J. Neurophysiol, 77: 1635–1638.PubMedGoogle Scholar
  24. Sañudo-Peña M.C., Walker J.M. 1998. Effects of intrapallidal cannabinoids on rotational behavior in rats: interactions with the dopaminergic system, Synapse 28: 27–32.PubMedCrossRefGoogle Scholar
  25. Sañudo-Peña M.C., Force M., Tsou K., Miller A.S., Walker J.M. 1998a. Effects of intrastriatal cannabinoids on rotational behavior in rats: interactions with the dopaminergic system, Synapse 30: 221–226.CrossRefGoogle Scholar
  26. Sañudo-Peña, M.C., Saundra L. Patrick, Robert L. Patrick and J. Michael Walker. 1998b. Cannabinoid control of movement in the basal ganglia in an animal model of parkinson disease. Neuroscience Letters, 248: 171–174.CrossRefGoogle Scholar
  27. Sañudo-Peña M.C., J.M. Walker. 1998. A novel neurotransmitter system involved in the control of motor behavior by the basal ganglia. Ann. NY Acad. Sci., 860 “Neuronal mechanisms for generating locomotor activity”, 475–479.Google Scholar
  28. Sañudo-Peña M. C., K. Tsou, J.M. Walker. 1999a. Motor Actions of cannabinoids in the basal ganglia output nuclei. Life Sciences special issue on Endogenous Cannabinoids, 65: 703–713.Google Scholar
  29. Sañudo-Peña M.C., Fride E. 2002. Marijuana and movement disorders. In Biology of Marijuana: From Gene to Behavior. Ed. by E.S. Onaivi, Integra Software Services, Pondicherry, India, 205–233.Google Scholar
  30. Sañudo-Peña M.C., J. Romero, J.J. Fernandez Ruiz, J. M. Walker. Activational role of cannabinoids on movement. European Journal of Pharmacology, 391 (2000) 269–74.PubMedCrossRefGoogle Scholar
  31. Tsou K., Brown S., Mackie K., Sañudo-Peña M.C., Walker J.M. 1998. Immunohistochemical distribution of cannabinoid CBI receptors in the rat central nervous system. Neuroscience, 83: 393–411.PubMedCrossRefGoogle Scholar
  32. Tsou K., M. I. Nogueron, S. Muthian, M.C. Sañudo-Peña, C. J. Hillard, D. G. Deutsch, and J. M. Walker, 1998b, Fatty acid amide hydrolase that degrades anandamide is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neuroscience Letters, 254,137–140.CrossRefGoogle Scholar
  33. Wilson C.J. 1993. The generation of natural firing patterns in neostriatal neurons. In GW Arbuthnott, PC Empson (Eds.) Chemical signalling in the basal ganglia, Progr. Brain Res., 99: 277–298.Google Scholar
  34. Yamaguchi K., Nabeshima T., Kameyama T. 1986. Role of dopaminergic and GABAergic mechanisms in discrete brain areas in phencyclidine-induced locomotor stimulation and turning behavior. J. Pharmacobiodyn., 9: 975–98.PubMedCrossRefGoogle Scholar
  35. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI., 1999, Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CBI receptorknockout mice.Proc Natl Acad Sci U S A, 96, 5780–5PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • M. Clara Sañudo-Peña
    • 1
  1. 1.The Alan M. Schrier Research Laboratory, Department of PsychologyBrown UniversityProvidenceUSA

Personalised recommendations