Immediate Early Gene (IEG) Induction in the Basal Ganglia upon Electrical Stimulation of the Cerebral Cortex

Involvement of the MAPkinase pathway IEG induction upon cortico-striatal stimulation
  • M. J. Besson
  • V. Sgambato
  • P. Vanhoutte
  • M. Rogard
  • C. Pages
  • A. M. Thierry
  • N. Maurice
  • J. M. Deniau
  • J. Caboche
Part of the Advances in Behavioral Biology book series (ABBI, volume 54)

Abstract

The cerebral cortex is a major input to the basal ganglia through its topographically organized projections to the striatum and the subthalamic nucleus (STN). By the analysis of IEG (c-fos and zif268) mRNA expression, we found that unilateral stimulation of the cerebral cortex produced a bilateral induction of these IEG in limited striatal and subthalamic territories, which varied with the stimulated cortical area. In parallel to IEGs induction, peptide mRNAs encoding substance P and enkephalin, differentially expressed by the two efferent striatal neuronal populations, were also increased in the striatal territory activated by the cortical stimulation. The IEG induction involved the activation of ionotropic glutamate receptors (AMPA and NMDA). Among various intracellular signaling pathways that could be activated by these receptors, the Mitogen Activated Protein Kinase (MAPK) of the Extracellular Regulated-signal Kinase (ERK) subfamily, appeared to be predominant implicated in IEGs induction. In fact, the local injection of a specific inhibitor of the MAPK/ERK pathway (PD98059) totally abolished IEGmRNA upregulation. We conclude that this IEG induction could participate to adaptive mechanisms involved in long term synaptic plasticity in the basal ganglia.

Key words

striatum subthalamic nucleus c-Fos enkephalin subtance P zif 268 MKP1 CREB Elk-1 PD 98059 phosphorylation mRNA transcription 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afsharpour S., (1985)J. Comp. Neurol.236: 14–28.PubMedCrossRefGoogle Scholar
  2. Atkins C.M., Selcher J.C., Petraitis J.J., Trzaskos J.M., Sweatt J.D. (1998)Nature Neurosci.7: 602–609.Google Scholar
  3. Bading H., Ginty D.D., Greenberg M.E. (1993)Science260: 181–186.PubMedCrossRefGoogle Scholar
  4. Beretta S., Parthasarathy H.B., Graybiel A.M. (1997)J. Neurosci. 17:4752–4763.Google Scholar
  5. Bernard V, & Bolam JP. (1998)Eur J Neurosci.10: 3721–3736PubMedCrossRefGoogle Scholar
  6. Bernard V., Legay C., Massoulie J., Bloch B. (1995)Neurosci.64: 995–1005.CrossRefGoogle Scholar
  7. Bito H., Deisseroth K., Tsien R.W. (1996Cell87: 1203–1214.PubMedCrossRefGoogle Scholar
  8. Calabresi P., Calabresi P, Pisani A, Mercuri NB, Bernardi G (1996)Trends Neurosci.19:19–24.PubMedCrossRefGoogle Scholar
  9. Charpier S., Deniau J.M. (1997)Proc Nall Acad Sci94: 7036–7040.CrossRefGoogle Scholar
  10. Cowan R. L. and Wilson C. J., (1994) J. Neurophysiol., 71: 17–32PubMedGoogle Scholar
  11. Dure LS 4th, Young AB, Penney JB Jr, 1992Proc Nall Acad Sci.89: 7688–7692CrossRefGoogle Scholar
  12. English J.D., Sweatt J.D. (1997)J. Biol. Chem.272: 19103–19106.PubMedCrossRefGoogle Scholar
  13. Finkbeiner S., Tavazoie S.F., Maloratsky A., Jacobs K.M., Harris K.M., Greenberg M.E. (1997)Neuron19: 1031–1047.PubMedCrossRefGoogle Scholar
  14. Ginty D.D. (1997)Neuron18: 183–186.PubMedCrossRefGoogle Scholar
  15. Graybiel A.M.Trends Neurosci.(1990) 13: 244–54PubMedCrossRefGoogle Scholar
  16. Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP, Ince E, Yi H, Levey AI (1995)J Neurosci.5: 5222–5237.Google Scholar
  17. Hipskind R.A., Rao V.N., Mueller C.GF., Reddy E.S.P., Nordheim A.(1991)Nature354: 531–534.PubMedCrossRefGoogle Scholar
  18. Lev, S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J.M., Plowman GD., Rudy B., Schlessinger J.(1995)Nature376: 737–745.PubMedCrossRefGoogle Scholar
  19. Marais, R., Wynne J., Treisman R. (1993)Cell73: 381–393.PubMedCrossRefGoogle Scholar
  20. Maurice N, Deniau JM, Glowinski J, Thierry AM, (1998)J Neurosci.18: 9539–46PubMedGoogle Scholar
  21. McGeorge A.I, Faull RL, (1989)Neuroscience.29: 503–37.PubMedCrossRefGoogle Scholar
  22. Parthasarathy H.B., Graybiel A.M. (1997)J. Neurosci. 17:2477–2491.PubMedGoogle Scholar
  23. Sgambato V, Abo V, Rogard M, Besson MJ, Deniau JM (1997)Neuroscience81: 93–112.PubMedCrossRefGoogle Scholar
  24. Sgambato V, Maurice N, Besson MJ, Thierry AM, Deniau JM., (1999)Neuroscience;93: 1313–21PubMedCrossRefGoogle Scholar
  25. Sgambato V., Pagès C., Rogard M., Besson M.-J., Caboche J.(1998)J. Neurosci.18: 8814–8825.PubMedGoogle Scholar
  26. Siciliano J.C., Toutant M., Derkinderen P., Sasaki T., Girault J.A. (1996)J. Biol. Chem.271: 28942–28946.PubMedCrossRefGoogle Scholar
  27. Smith AD & Bolam JP.Trends Neurosci.(1990) 13: 259–65.PubMedCrossRefGoogle Scholar
  28. Sugimoto T., Stewart S., Guan K.L. (1997)J. Biol. Chem.272: 29415–29418.PubMedCrossRefGoogle Scholar
  29. Vanhoutte P., Barrier J.V.B., Guibert B., Pagès C., Besson M.J., Hipskind R.A., Caboche J. (1999)Mol. Cell. Biol.19: 136–146.PubMedGoogle Scholar
  30. Xing J., Ginty D.D., Greenberg M.E. (1996) Science, 273: 959–963.PubMedCrossRefGoogle Scholar
  31. Yakel J.L. (1997)Trends Pharmacol. Sci.18: 124–134.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • M. J. Besson
    • 1
  • V. Sgambato
    • 1
  • P. Vanhoutte
    • 1
  • M. Rogard
    • 1
  • C. Pages
    • 1
  • A. M. Thierry
    • 2
  • N. Maurice
    • 2
  • J. M. Deniau
    • 1
  • J. Caboche
    • 1
  1. 1.Dept Neurochimie-AnatomieIDN, UPMCParisFrance
  2. 2.INSERM U114Collège de FranceParisFrance

Personalised recommendations