Distribution of Substantia Nigra Pars Compacta Neurons with Respect to Pars Reticulata Striato-Nigral Afferences: Computer-Assisted Three-Dimensional Reconstructions

Contribution of 3D modeling to neuroanatomical studies
  • B. Banrezes
  • P. Andrey
  • A. Menetrey
  • P. Mailly
  • J.-M. Deniau
  • Y. Maurin
Part of the Advances in Behavioral Biology book series (ABBI, volume 54)


Following ionophoretic injections of wheat germ agglutinin coupled to horseradish peroxidase into identified functional striatal territories of the rat brain, the distribution of anterogradely labelled striatonigral projections and retrogradely labelled nigrostriatal neurons was studied by three-dimensional modeling. Our models confirmed and extended the organizational scheme of striatonigral projections, already reported by our laboratory. The relationship between striatonigral projections and nigrostriatal neurons was also studied. For each striatal injection site, two subpopulations of labelled nigral neurons were distinguished by their position with respect to the striatal projection field. The first one occupied a proximal position, in register with the labelled striatal projections, while the second one was more distal. The subpopulations of proximal neurons innervating different functional striatal sectors were segregated in the mediolateral, dorsoventral and rostrocaudal directions, while the distal neurons, more scattered, showed a lesser degree of spatial segregation. These results suggest that the substantia nigra might control the flow of cortical information through the striatum via two different modalities based respectively on a closed nigro-striatal loop involving the proximal neurons, and an open loop involving the distal ones. We propose an organization scheme which may account for both the segregation and the intermingling of cell populations innervating distinct striatal sectors. Finally, the contribution of 3D modeling to neuroanatomical studies is discussed, along with the perspectives towards more quantitative and predictive 3D modeling.


Basal Ganglion Ventral Tegmental Area Wheat Germ Agglutinin Nigral Neuron Organization Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afifi A.K. (1994) Basal ganglia: functional anatomy and physiology. Part 1.J. Child Neurol.9, 249–260.CrossRefGoogle Scholar
  2. 2.
    Afifi A.K. (1994) Basal ganglia: functional anatomy and physiology. Part 2.J. Child Neurol.9, 352–361.CrossRefGoogle Scholar
  3. 3.
    Alexander G.E. and Crutcher M.D. (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing.Trends Neurosci., 13, 266–271.PubMedCrossRefGoogle Scholar
  4. 4.
    Alexander G.E. Crutcher M.D. and DeLong M.R. (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions.Prog. Brain Res.85, 119–146.PubMedCrossRefGoogle Scholar
  5. 5.
    Carter, D.A. and Fibiger, H.C. (1977) Ascending projections of presumed dopamine-containing neurons in the ventral tegmentum of the rat as demonstrated by horseradish peroxidase.Neuroscience2, 569–576.PubMedCrossRefGoogle Scholar
  6. 6.
    Deniau, J.M. and Chevalier, G., (1992) The lamellar organization of the rat substantia nigra pars reticulata: distribution of projection neurons.Neuroscience46, 361–377.PubMedCrossRefGoogle Scholar
  7. 7.
    Deniau, J.M., Menetrey, A. and Charpier, S. (1996) The lamellar organization of the rat substantia nigra pars reticulata: segregated patterns of striatal afferents and relationship to the topography of corticostriatal projections.Neuroscience73, 761–781.PubMedCrossRefGoogle Scholar
  8. 8.
    Deniau J.M. and Thierry A.M. (1997) Anatomical segregation of information processing in the substantia nigra pars reticulata. InThe Basal Ganglia and new surgical approaches for Parkinson’s disease(eds Obeso J.A., DeLong M.R., Ohye C. and Marsden C.D.), Advances in Neurology, Vol. 74, pp. 83–96. Lippincott-Raven Publishers, Philadelphia.Google Scholar
  9. 9.
    Donoghue J.P. and Herkenham M. (1986) Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat.Brain Res.365, 397–403.PubMedCrossRefGoogle Scholar
  10. l0.
    Druga, R. (1989) Nigro-striatal projections in the rat as demonstrated by retrograde transport of horseradish peroxidase. I. Projections to the rostral striatum.J. Hirnforsch.30, 11–21.PubMedGoogle Scholar
  11. 11.
    Fallon, J.H. and Moore, R.Y. (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum.J. Comp. Neurot.180, 545–580.CrossRefGoogle Scholar
  12. 12.
    Fallon J.H. and Loughlin, S.E. (1995) Substantia nigra. InThe Rat Nervous System: A Handbook for Neuroscientists(eds. Paxinos, G and Watson, J.), pp. 215–237. Academic Press, Sydney.Google Scholar
  13. 13.
    Goldman-Rakic P.S. and Selemon L.D. (1990) News frontiers in basal ganglia research.Trends Neurosci.13, 241–244.PubMedCrossRefGoogle Scholar
  14. 14.
    Graybiel A.M. and Ragsdale C.W.Jr. (1979) Fiber connections of the basal ganglia.Prog. Brain Res.51, 239–283.CrossRefGoogle Scholar
  15. I5.
    Groenewegen H.J., Berendse H.W., Wolters J.G. and Lohman A.H.M. (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. InProg. Brain Res.(eds Uylings H.B.M., Van Eden C.G., De Bruin M.A., Corner M.A. and Feenestra M.G.P.), Vol. 85, pp. 95–118. Elsevier, Amsterdam.Google Scholar
  16. I6.
    Guyenet, P.G and Aghajanian GK. (1978) Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra.Brain Res.150, 69–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Guyenet, P.G. and Crane, J.K. (1981) Non-dopaminergic nigrostriatal pathway.Brain Res.213, 291–305.PubMedCrossRefGoogle Scholar
  18. 18.
    Heimer, L. and Wilson, R.D. (1975) The subcortical projections of the allocortex: similarities in the neuronal association of the hippocampus, the piriform cortex and the neocortex. InGolgi Centennial Symposium: Perspectives in Neurobiology(ed. Santini M.), pp. 177–193, Raven, New York.Google Scholar
  19. 19.
    Hontanilla, B., De Las Heras, S. and Gimenez-Amaya, J.M. (1996) A topographic re-evaluation of the nigrostriatal projections to the caudate nucleus in the cat with multiple retrograde tracers.Neuroscience72, 485–503.PubMedCrossRefGoogle Scholar
  20. 20.
    Lynd-Balta, E. and Haber, S.N. (1994) The organization of midbrain projections to the striatum in the primate.Neuroscience59, 609–623.PubMedCrossRefGoogle Scholar
  21. 21.
    Lynd-Balta, E. and Haber, S.N. (1994) The organization of midbrain projections to the striatum in theprimate: sensorimotor-related striatum versus ventral striatum.Neuroscience59, 625–640.PubMedCrossRefGoogle Scholar
  22. 22.
    Lynd-Balta, E. and Haber, S.N. (1994) Primate striato-nigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum.J. Comp. Neurol.345, 562–578.PubMedCrossRefGoogle Scholar
  23. 23.
    Maurin, Y., Banrezes, B., Menetrey, A., Mailly, P. and Deniau, J.M. (1999) Three-dimensional distribution of nigrostriatal neurons in the rat: relation to the topography of striatonigral projections.Neuroscience91, 891–909.PubMedCrossRefGoogle Scholar
  24. 24.
    Nauta, W.J.H. and Domesick, V.B. (1984) Afferent and efferent relationships of the basal ganglia. In Functions of the Basal Ganglia, Ciba Foundation Symposium 107, pp. 3–23, Pitman, London.Google Scholar
  25. 25.
    Parent A. and Hazrati L.-N. (1995) Funtional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop.Brain Res. Rev.20, 91–127.PubMedCrossRefGoogle Scholar
  26. 26.
    . Parthasarathy H.B. Schall J.D. and Graybiel A.M .(1992) Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey.J. Neurosci.12, 4468–4488.PubMedGoogle Scholar
  27. 27.
    Roesch, S., Mailly, P., Deniau, J.M. and Maurin, Y. (1996) Computer assisted three-dimensional reconstruction of brain regions from serial section digitized images. Application to the organization of striato-nigral relationships in the rat.J. Neurosci. Methods69, 197–204.PubMedCrossRefGoogle Scholar
  28. 28.
    Selemon L.D. and Goldman-Rakic P.S. (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey.J. Neurosci.5, 776–794.PubMedGoogle Scholar
  29. 29.
    Van der Kooy, D. (1979) The organization of the thalamic, nigral and raphe cells projecting to the medial vs lateral caudate-putamen in rat. A fluorescent retrograde double labeling study.Brain Res.169, 381–387.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • B. Banrezes
    • 1
  • P. Andrey
    • 1
  • A. Menetrey
    • 2
  • P. Mailly
    • 3
  • J.-M. Deniau
    • 2
  • Y. Maurin
    • 1
  1. 1.Analyse et Modélisation en Imagerie BiologiqueINRA JE 1060/77Jouy-en-JosasFrance
  2. 2.INSERM U 114, Chaire de NeuropharmacologieCollège de FranceParis Cedex 05France
  3. 3.Neurobiologie des signaux Intercellulaires, CNRS UMR 7101Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations