Evidence from a Leukemia Model for Maintenance of Vascular Endothelium by Bone-Marrow-Derived Endothelial Cells

  • Eberhard Gunsilius
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 522)

Summary

The maintenance of tissues of virtually all organs depends on a sufficient blood supply. During embryogenesis, primitive blood vessels are formed de novo by the aggregation of angioblasts, a process that is termed vasculogenesis. In postnatal life, the development of new blood vessels is restricted to the female reproductive tract (during the ovulatory cycle) and to sites of wound healing, and occurs through a process called angiogenesis, i.e. the sprouting of new vessels from the preexisting vasculature.

However, neovascularization can also occur under pathological conditions, e.g. tumor cells can “switch on” angiogenesis. New blood vessels bring in nutrients and proteins, so the tumor mass can expand. In fact, neovascularization appears to be one of the crucial steps in the transition of a tumor from a small cluster of malignant cells to a visible macroscopic tumor capable of spreading to other organs via the vasculature throughout the body. The association of tumor growth with the development of a vascular network was recognized nearly a century ago.

Using a leukemia model, chronic myelogenous leukemia (CML), we were able to provide evidence for the existence of a hemangioblastic progenitor cell in the bone marrow of adult humans. Using the pathognomonic BCR-ABL-fusion gene as a genetic marker present in virtually all bone marrow derived cells of patients with CML, we were able to show that endothelial cells belong to the malignant cell clone, since they also contain the BCR-ABL-fusion gene. Our data suggest that CML arises from a hemangioblastic progenitor cell, the progeny of which are malignant blood cells and genotypically clonal endothelial cells. Thus, we provide substantial evidence that indeed a hemangioblast exists in the bone marrow of human adults. In addition, our data imply that normal as well as genotypically malignant bone-marrow-derived endothelial cells can contribute to maintenance angiogenesis in the vascular endothelium, a condition that is consistent with postnatal vasculogenesis. These findings were recently confirmed by other groups and should help in elucidating the pathophysiology of malignant and nonmalignant disorders. The integration of bone-marrow-derived endothelial cells into the vascular endothelium has implications for the development of vascular targeting strategies (e.g., gene therapy) for vascular diseases, inflammatory disorders, and cancer. The characterization of the hemangioblast at a clonal level as well as the translation of these findings into a clinically applicable concept for the delivery of therapeutic genes to malignant tumors is currently in progress in our laboratory.

Keywords

Permeability Ischemia Tyrosine Leukemia Intussusception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gunsilius, E., Duba, H. C., Petzer, A. L., Kähler, C. M.. Grünewald, K., Stockhammer, G., Gabl. C., Dimhofer, S., Clausen, J., and Gastl, G.: Evidence from a leukaemia model for the maintenance of the blood vascular endothelium by bone-marrow derived endothelial cells. Lancet 355:1688–1691 (2000).PubMedCrossRefGoogle Scholar
  2. 2.
    Maximow, A.: Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung and im postfetalen Leben der Säugetiere. Folia Haematologica VIIII 8:125–134 (1909).Google Scholar
  3. 3.
    Akashi, K., Traver, D., Miyamoto, T., and Weissman, I. L.: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages [In Process Citation]. Nature 2000.Mar.9;404(6774):193–7. 404:193–7 (2000).Google Scholar
  4. 4.
    Kondo, M., Weissman, I. L., and Akashi, K.: Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    Alexander, W. S.: Cytokines in hematopoiesis. Int.Rev.Immunol. 16:651–682 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    Berenson, R. J., Andrews, R. G., Bensinger, W. 1., Kalamasz, D., Knitter, G.. Buckner, C. D., and Bernstein, 1. D.: Antigen CD34+ marrow cells engraft lethally irradiated baboons. J.Clin.Invest 81:951–955 (1988).Google Scholar
  7. 7.
    Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G.. Olweus, J., Kearney, J., and Buck, D. W.: AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012 (1997).PubMedGoogle Scholar
  8. 8.
    Duhrsen, U., Villeval, J. L., Boyd, J., Kannourakis, G., Morstyn, G.. and Metcalf, D.: Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72:2074–2081 (1988).PubMedGoogle Scholar
  9. 9.
    Ziegler, B. L., Valtieri, M., Porada, G. A., De Maria, R., Muller, R., Masella, B.. Gabbianelli, M., Casella, I., Pelosi, E., Bock, T., Zanjani, E. D., and Peschle, C.: KDR receptor: a key marker defining hematopoietic stem cells. Science 285:1553–1558 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    Cumano, A., Dieterlen-Lievre, F., and Godin. I.: Lymphoid potential. probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86:907–916 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    Flamme, I. and Risau, W.: Induction of vasculogenesis and hematopoiesis in vitro. Development 116:435–439 (1992).PubMedGoogle Scholar
  12. 12.
    His, W.: Lecithoblast and Angioblast der Wirbelthiere. Abhandl KS Ges Wiss Math Phys 22:171–328 (1901).Google Scholar
  13. 13.
    Sabin, F. R.: Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma and red blood cells as seen in the living chick. Anatomical Record 13:199–204 (1917).CrossRefGoogle Scholar
  14. 14.
    Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L.. and Schuh, A. C.: Failure of blood-island formation and vasculogenesis in Flk- I - deficient mice. Nature 376:62–66 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S.. Powell-Braxton, L., Hillan, K. J., and Moore, M. W.: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    Carmeliet, P., Ferreira, V., Breier. G., Pollefeyt, S., Kieckens. L., Gertsenstein, M., Fahrig. M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A.: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439 (1996).PubMedCrossRefGoogle Scholar
  17. 17.
    Eichmann, A., Corbel, C., Nataf, V., Vaigot, P., Breant, C., and Le Douarin, N. M.: Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc.Natl.Acad.Sci.U.S.A 94:5141–5146 (1997).PubMedCrossRefGoogle Scholar
  18. 18.
    Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G.: A common precursor for hematopoietic and endothelial cells. Development 125:725–732 (1998).PubMedGoogle Scholar
  19. 19.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M.. van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J. M.: Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    Virchow, R.: Weisses Blut. Neue Notizen aus dem Gebiet der Natur-und Heilkunde. Florieps Neue Notizen 36:151. (1845).Google Scholar
  21. 21.
    Nowell, P. C. and Hungerford, D. A.: A minute chromosome in human granulocytic leukemia. Science 132:1497–1501 (1960).Google Scholar
  22. 22.
    Rowley, J. D.: Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293 (1973).PubMedCrossRefGoogle Scholar
  23. 23.
    Eibl, B., Ebner, S., Duba, C., Bock, G., Romani, N., Erdel, M., Gachter, A., Niederwieser, D.. and Schuler. G.: Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the Philadelphia translocation and can induce a CML-specific primary cytotoxic T- cell response. Genes Chromosomes.Cancer 20:215–223 (1997).PubMedCrossRefGoogle Scholar
  24. 24.
    Groffen, J.. Stephenson, J. R.. Heisterkamp, N.. de Klein. A., Bartram, C. R.. and Grosveld, G.: Philadelphia chromosomal breakpoints are clustered within a limited region. ber, on chromosome 22. Cell 36:93–99 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    Petzer, A.. Hochenburger. E, Haun, M.. Duba, C., Grünewald, K., Hoflehner, E., Sill. H, Linkesch, W, Gastl, G, and Gunsilius, E.: High-dose hydroxyurea plus G-CSF mobilizes bcr-abl negative progenitor cells (CFC, LTC-IC) into the blood of newly diagnosed CML-patients at any time of hematopoietic regeneration. J.Hematother.Stem Cell Res. 11: 293–300 (2002).PubMedCrossRefGoogle Scholar
  26. 26.
    Crosby, J. R., Kaminski. W. E., Schatteman. G., Martin. P. J.. Raines, E. W., Seifert, R. A., and Bowen-Pope, D. F.: Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ.Res. 87:728–730 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    Pinedo, H. M., Verheul, H. M., D’Amato, R. J., and Folkman, J.: Involvement of platelets in tumour angiogenesis? Lancet 352:1775–1777 (1998).PubMedCrossRefGoogle Scholar
  28. 28.
    Lagaaji, E. L., Cramer-Knijnenburg, G. F., van Kemenade, F. J., van Es, L. A., Brujin, J. A., and van Krieken. J. H. J. M.: Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 357:33–37 (2001).CrossRefGoogle Scholar
  29. 29.
    Gao, Z., McAlister, V. C.. and Williams. G. M.: Repopulation of liver endothelium by bone-marrow-derived cells. Lancet 357:932–933 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    Quaini, F., Urbanek, K., Beltrami, A. P., Finato. N., Beltrami, C. A., Nadal-Ginard, B.. Kajstura, J., Leri, A., and Anversa, P.: Chimerism of the transplanted heart. N.Engl.J.Med. 346:5–15 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    Carmeliet, P.: Mechanisms of angiogenesis and arteriogenesis. Nat.Med. 6:389–395 (2000).PubMedCrossRefGoogle Scholar
  32. 32.
    Carmeliet, P. and Jain. R. K.: Angiogenesis in cancer and other diseases. Nature 407:249–257 (2000).PubMedCrossRefGoogle Scholar
  33. 33.
    Asahara, T., Masuda, H., Takahashi, T.. Kalka. C.. Pastore. C., Silver, M.. Keane, M.. Magner, M., and Isner. J. M.: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ.Res. 85:221–228 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    Asahara. T., Takahashi. T., Masuda, H., Kalka, C., Chen. D., Iwaguro, H., Inai, Y., Silver, M., and Isner. J. M.: VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18:3964–3972 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    Takahashi, T., Kalka, C., Masuda, H., Chen, D.. Silver. M., Kearney. M., Magner. M., Isner, J. M., and Asahara, T.: lschemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat.Med. 5:434–438 (1999).PubMedCrossRefGoogle Scholar
  36. 36.
    Gunsilius, E, Tschmelitsch, J., Eberwein, M., Schwelberger. H., Spizzo, G.. Kähler. C. M., Stockhammer, G., Lang, A., and Gastl, G.: In-vivo release of vascular endothelial growth factor from colorectal carcinomas. Oncology 62(4):313–7 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Eberhard Gunsilius
    • 1
  1. 1.Tumor-Biology & Angiogenesis Lab. Division of Hematology & OncologyUniversity InnsbruckAustria

Personalised recommendations