Skip to main content

Tissular Insemination of Progenitor Endothelial Cells: The Problem, and a Suggested Solution

  • Chapter
Book cover Novel Angiogenic Mechanisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 522))

Summary

The contribution of circulating precursor endothelial cells (CPEC) to adult angiogenesis is now well established. However, the mechanism of their tissular engrafting remains poorly understood. The classical paradigm of “sprouting” cannot accommodate the main features of the CPEC-based angiogenic process. Additionally, vasculogenesis based on the differentiation of angioblasts, as defined in the embryonic stages, is not applicable to adult neo-vascularization either. In search for a solution to this dilemma, I suggest that the ability of monocytes/macrophages to produce tunnels, as effect of their protease-dependent migration in the extracellular matrices, is instrumental for the tissular insemination of CPEC. Here I present in vivo and in vitro experimental evidence for the existence of tunnels, and for their colonization by monocytes/macrophages and by other cells, including CPEC. As a paradigm of CPEC behavior, the tunneling model (in an extended sense) may also explain the propagation of the endothelium with arteriolar phenotype within the pre-existent downstream capillary network. Thus, the sprouting mechanism might be a valid explanation for the formation of new capillaries and venules, whereas CPEC would contribute mostly, if not exclusively, to the extension of arteriolar branches of microvasculature. Adult angiogenesis occurs therefore as a multifunctional process based on intercellular cooperation, in which there are involved endothelial cells (EC) or their precursors, as well as other cell types. In specific circumstances, the lumen (i.e. the tunnel) may occur before the “definitive” microvessel. Therefore the very notion of microvessel may need to be extended, to include the tunnels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Asahara, T. Murohara, A. Sullivan, M. Silver, Z.R. van der, T.Li. B. Witzenbichler. G. Schatteman, and J.M. Isner, Isolation of putative progenitor endothelial cells for angiogenesis, Science 275(5302), 964-967 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. T. Takahashi, C. Kalka, H. Masuda, D. Chen, M. Silver, M. Kearney, M. Magner. J.M. Isner, and T. Asahara, Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization, Nat. Med. 5(4), 434-438 (1999).

    CAS  Google Scholar 

  3. G.C. Schatteman, H.D. Hanlon, C. Jiao, S.G. Dodds. and B.A. Christy. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice, J. Clin. Invest 106(4), 571-578 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. S. Rafii, Circulating endothelial precursors: mystery, reality, and promise, J. Clin. Invest 105(1), 17-19 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. E. Gunsilius, H.C. Duba, A.L. Petzer, C.M. Kahler, K. Grunewald, G. Stockhammer, C. Gabl. S. Dimhofer, J. Clausen, and G. Gastl, Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells, Lancer 355(9216), 1688-1691 (2000).

    Article  CAS  Google Scholar 

  6. T. Graf, Differentiation plasticity of hematopoietic cells, Blood 99(9). 3089-3101 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. B.Alberts, D. Bray, Mewls, M.Raff. K.Roberts, and J.D. Watson, Molecular Biology of the Cell. 3rd Ed, (Garland Science Publishing, New York).

    Google Scholar 

  8. S.M. Schwartz, C.M. Gajdusek, M.A. Reidy, S.C. Selden. III, and C.C. Haudenschild, Maintenance of integrity in aortic endothelium, Fed. Proc. 39(9), 2618-2625 (1980).

    CAS  Google Scholar 

  9. J. Folkman and C. Haudenschild, Angiogenesis by capillary endothelial cells in culture, Trans. Ophthalmol. Soc. U. K. 100(3), 346-353 (1980).

    PubMed  CAS  Google Scholar 

  10. M.M. Sholley, G.P. Ferguson, H.R.Seibel, J.L. Montour, and J.D. Wilson, Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells, Lab Invest 51(6). 624-634 (1984).

    PubMed  CAS  Google Scholar 

  11. P.Libby and U. Schonbeck, Drilling for oxygen: angiogenesis involves proteolysis of the extracellular matrix, Circ. Res. 89(3), 195-197 (2001)

    PubMed  CAS  Google Scholar 

  12. L.Diaz-Flores, R. Gutierrez. and H. Varela, Behavior of postcapillary venule pericytes during posmatal angiogenesis, J. Morphol. 213(I), 33-45 (1992)

    Article  PubMed  CAS  Google Scholar 

  13. V. Nehls. K. Denzer, and D. Drenckhahn, Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 270(3), 469-474 (1992)

    Article  PubMed  CAS  Google Scholar 

  14. H. Tsuzuki and S. Sasa. Ultrastructural observation of capillary sprouts in the dental organs of rat molars, Kaibogaku Zasshi 69(5), 684-696 (1994).

    PubMed  CAS  Google Scholar 

  15. A. Sasaki, Y. Nakazato, A. Ogawa, and S. Sugihara, The immunophenotype of perivascular cells in the human brain, Pathol. lni. 46(1), 15-23 (1996).

    CAS  Google Scholar 

  16. L. Diaz-Flores, R. Gutierrez, A. Lopez-Alonso, R. bGonzalez, and H. Varela, Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis, Clin. Orihop.275), 280-286 (1992).

    Google Scholar 

  17. J.R. Crosby, W.E. Kaminski, G. Schatteman, P.J. Martin, E.W. Raines, R.A. Seifert, and D.F. Bowen-Pope, Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation, Circ. Res 87(9), 728-730 (2000).

    CAS  Google Scholar 

  18. M. Reyes, A. Dudek, B. Jahagirdar, L. Koodie, P.H. Marker, and C.M. Verfaillie, Origin of endothelial progenitors in human postnatal bone marrow, J. Clin. Invest 109(3), 337-346 (2002).

    PubMed  CAS  Google Scholar 

  19. M. Harraz, C, Jiao, H.D. Hanlon, R-S. Hartley, and G.C. Schatteman, Cd34(-) blood-derived human endothelial cell progenitors, Stem Cells 19(4), 304-312 (2001).

    Google Scholar 

  20. J.M. Isner, C. Kalka, A. Kawamoto, and T. Asahara, Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann. N.Y. Acad. Sci. 953(75-84 (2001).

    Google Scholar 

  21. Dahlqvist k, E.Y. Umemoto, J.J. Brokaw, M.D upuis, and D.M. McDonald, Tissue macrophages associated with angiogenesis in chronic airway inflammation in rats, Am. J. Respir. Cell Mol. Biol. 20(2), 237-247 (1999).

    PubMed  CAS  Google Scholar 

  22. M.M adlener, W.C. Parks, and S. Wemer. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair, Exp. Cell Res. 242(1), 201-210 (1998).

    Article  CAS  Google Scholar 

  23. G.T. Meyer, LJ. Matthias, L. Noack, M.A. Vadas, and J.R, Gamble, Lumen formation during angiogenesis in vitro involves phagocytic activity. formation and secretion of vacuoles, cell death, and capillary tube remodelling by different populations of endothelial cells, Anat. Rec. 249(3), 327-340 (1997).

    CAS  Google Scholar 

  24. J.M. Isner and T. Asahara. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization, J. Clin. Invest 103(9), 1231-1236 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. N.I. Moldovan, P.J. Goldschmidt-Clermont, J. Parker-Thomburg, S.D. Shapiro, and P.E, Kolattukudy, Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium, Circ. Res. 87(5). 378-384 (2000).

    CAS  Google Scholar 

  26. Moldovan,  NI.  Role of monocytes and macrophages in adult angiogenesis: a light at the tunnel’e end. J Hematother Stem Cell Res. 2002.

    Google Scholar 

  27. L.F. Brown, A.M. Dvorak, and H,F. Dvorak. Leaky vessels, fibrin deposition. and fibrosis: a sequence of events common to solid tumors and to many other types of disease, Am. Rev. Respir. Dis. 140(4), 1104-1107(1989)

    CAS  Google Scholar 

  28. N.1. Moldovan, Z. Qian, Y. Chen, C. Dong, A. Ying, R.H. Hruban, N-A. Flavahan, W.M. Baldwin Ill, F. Sanfilippo, and P.J. Goldschmidt-Clermont, Fas-mediated apoptosis in accelerated graft arteriosclerosis, Angiogenesis 2(3), 245-254 (2002).

    Article  Google Scholar 

  29. P.E. Kolattukudy, T. Quach, S. Bergese, S. Breckenridge, J. Hensley, R. Altschuld, G. Gordillo, S. Klenotic, C. Orosz, and J. Parker-Thomburg, Myocarditis induced by targeted expression of the MCP-I gene in murine cardiac muscle, Am. J. Pathol. 152(1), 101-11 I (1998).

    Google Scholar 

  30. C.M. Hohl, B. Hu, R.H. Fertel, J.C. Russell, S.A. McCune, and R.A. Altschuld, Effects of obesity and hypertension on ventricular myocytes: comparison of cells from adult SHHF/Mcc-cp and JCR:LAcp rats, Cardiovasc. Res. 27(2). 238-242 (1993)

    Article  PubMed  CAS  Google Scholar 

  31. M. Terashima. K. Awano, Y. Honda, N. Yoshino, T. Mori, H. Fujita, Y. Ohashi. O. Seguchi, K-Kobayashi. M. Yamagishi, P.J. Fitzgerald, P.G. Yock, and K. Maeda. Images in cardiovascular medicine. “Arter-ies within the artery” after Kawasaki disease: a lotus root appearance by intravascular ultrasound, Circulation 106(7), 887 (2002).

    Article  PubMed  Google Scholar 

  32. M. Adachi, S. Suematsu, T. Suda, D. Watanabe, H. Fukuyama, J. Ogasawara, T. Tanaka, N. Yoshida, and S. Nagata, Enhanced and accelerated lymphoproliferation in Fas-null mice, Proc. Natl. Acad. Sci. U. S. A 93(5), 2131-2136 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. V. Bhattacharya, P. A. McSweeney, Q. Shi, B. Bruno, A. lshida, R. Nash, R.F. Storb, L.R. Sauvage, W.P. Hammond, and M.H. Wu. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells, Blood 95(2), 581-585 (2000).

    PubMed  CAS  Google Scholar 

  34. Q. Shi, M.H. Wu, Y. Fujita, A. Ishida, E.S. Wijelath, W.P. Hammond, A.R. Wechezgk, C. Yu. R.F. Storb, and L.R. Sauvage, Genetic tracing of arterial graft flow surface endothelialization in allogeneic marrow transplanted dogs, Cardiovasc. Surg. 7(1), 98-105 (1999).

    CAS  Google Scholar 

  35. B. Peault, I.L. Weissman, A.M. Buckle, A. Tsukamoto. and C. Baum. Thy-l-expressing CD34+ human cells express multiple hematopoietic potentialities in vitro and in SCID-hu mice, Nouv. Rer. Fr. Hematol. 35(1), 91-93 (1993).

    CAS  Google Scholar 

  36. W.S. Lee, M. KJain, B.M. Arkonac, D. Zhang, S.Y. Shaw, S. Kashiki, K. Maemura. S.L. Lee, N.K. Hollenberg, M.E, Lee, and E. Haber, Thy-1, a novel marker for angiogenesis upregulated by inflammatory cytokines, Circ. Res. 82(8), 845-851 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. H.F. Dvorak, V.S. Harvey, P. Estrella, L.F. Brown. J. McDonagh. and A.M. Dvorak, Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing, Lab Invest 57(6), 673-686 (1987).

    PubMed  CAS  Google Scholar 

  38. D.M. McDonald, L. Munn, and R.K. Jain, Vasculogenic mimicry: how convincing, how novel, and how significant?, Am. J. Pathol. 156(2), 383-388 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. T.M. Schlaeger, S. Bartunkova, J.A. Lawitts, G. Teichmann, W. Risau. U. Deutsch, and T.N. Sato, Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice, Proc. Natl. Acad. Sci. U. S. A 94(7), 3058-3063 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. T. Asahara, T. Takahashi, H. Masuda, C. Kalka, D. Chen, H. lwaguro, Y. lnai, M. Silver, and J.M. Isner, VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells, EMBO J. 18(14), 3964-3972 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. A. Passaniti, R.M. Taylor, R. Pili, Y. Guo, P.V. Long, J.A. Haney, R.R. Pauly. D.S. Grant. and G.R. Martin. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin. and fibroblast growth factor, Lab hives! 67(4), 519-528 (1992).

    CAS  Google Scholar 

  42. S. Gordon, Macrophage-restricted molecules: role in differentiation and activation. (mmunol. Lett. 65(12), 5-8 (1999).

    CAS  Google Scholar 

  43. V.  Nehls, R. Herrmann, and M. Huhnken, Guided migration as a novel mechanism of capillary network remodeling is regulated by basic fibroblast growth factor, Histochem. Cell Biol. 109(4), 319-329 (1998).

    CAS  Google Scholar 

  44. D.B.  Archer and T.A. Gardiner, Electron microscopic features of experimental choroidal neovascularizalion, Am. J. Ophthalmol. 91(4), 433-457 (1981).

    PubMed  CAS  Google Scholar 

  45. N.W.  Gale, P. Baluk, L. Pan, M. Kwan. J. Holash, T.M. DeChiara. D.M. McDonald, and G.D.Yancopoulos, Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells, Der. Biol. 230(2), 151-160 (2001).

    CAS  Google Scholar 

  46. M.A. Rupnick, D. Panigrahy, C.Y. Zhang. S.M. Dallabrida, B.B. Lowell, R. Langer, and M.J. Folkman, Adipose tissue mass can be regulated through the vasculature, Proc. Natl. Acad. Sci. U. S. A 99(16), 10730-10735 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. M. Nesbit, H. Schaider, T.H. Miller, and M. Herlyn, Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells, J. !mmunol. 166(11), 6483-6490 (2001).

    CAS  Google Scholar 

  48. F. Hansen-Smith, S. Egginton, A.L. Zhou, and O. Hudlicka, Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle, Microvasc. Res. 62(1), 1-14 (2001).

    CAS  Google Scholar 

  49. K. Yuan. Y.T, Jin, and M.T. Lin, Expression of Tie-2, angiopoietin-I, angiopoietin-2. ephrinB2 and EphB4 in pyogenic granuloma of human gingiva implicates their roles in inflammatory angiogenesis, J. Periodontal Res. 35(3), 165-171 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. S. Monestiroli, P. Mancuso, A. Burlini, G. Pruneri, C. Dell’Agnola, A. Gobbi, G. Martinelli, and F. Bertolini, Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma, Cancer Res. 61 (11), 4341-4344 (2001).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moldovan, N.I. (2003). Tissular Insemination of Progenitor Endothelial Cells: The Problem, and a Suggested Solution. In: Moldovan, N.I. (eds) Novel Angiogenic Mechanisms. Advances in Experimental Medicine and Biology, vol 522. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0169-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0169-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4951-8

  • Online ISBN: 978-1-4615-0169-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics