Skip to main content

Matrix Metalloproteinases and the Plasminogen System in Tumor Progression

  • Chapter
Plasminogen: Structure, Activation, and Regulation
  • 173 Accesses

Abstract

Extracellular proteases play an important contributory role in cancer progression. Proteases are expressed by tumor and stromal cells in the tumor microenvironment, where they proteolytically modify a large variety of extracellular proteins. The mechanisms by which they contribute to tumor progression are multiple and becoming increasingly complex. By degrading proteins that constitute the extracellular matrix (ECM), proteases promote the invasion of tumor cells into surrounding tissues and blood vessels and contribute to the development of distant metastases. They also play a positive role in angiogenesis by promoting the penetration of malignant tissues by endothelial cells. The proteolytic spectrum of these proteases is, however, not restricted to ECM proteins as many proteins that control critical cellular functions such as cell adhesion, growth and survival, like growth factors, cell surface receptors and growth factor binding proteins, are also the target of these proteases. Among the multiple proteases that play a key role in cancer progression are the matrix metalloproteinases (MMPs) and the plasminogen activator-plasmin (PA) system referred here as the plasminogen system. The contribution of these proteases to cancer has been the subject of an abundant scientific literature. However, these two families of proteases have often been studied independently of each other and it is uncertain whether their function in cancer overlaps in a redundant or complementary manner. In this article, interactive aspects between MMPs and the plasminogen system will be discussed first at a biochemical level. How these interactions could play a role in cancer biology will then be reviewed. Because the biochemistry of the plasminogen system is discussed in detail in other chapters, it will not be reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, Y., Yamamoto, H., Itoh, F., Hinoda, Y., Okada, Y., and Imai, K. (1999). Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 45, 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Anand-Apte, B., Pepper, M.S., Voest, E., Montesano, R., Olsen, B., Murphy, G., Apte, S.S., and Zetter, B. (1997). Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest. Ophthalmol. Vis. Sci. 38, 817–823.

    PubMed  CAS  Google Scholar 

  • Bajou, K., Masson, V., Gerard, R.D., Schmitt, P.M., Albert, V., Praus, M., Lund, L.R., Frandsen, T.L., Brunner, N., Dano, K., Fusenig, N.E., Weidle, U., Carmeliet, G., Loskutoff, D., Collen, D., Carmeliet, P., Foidart, J.M., and Noel, A. (2001). The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J. Cell. Biol. 152, 777–784.

    Article  PubMed  CAS  Google Scholar 

  • Bajou, K., Noel, A., Gerard, R.D., Masson, V., Brunner, N., Holst-Hansen, C., Skobe, M., Fusenig, N.E., Carmeliet, P., Collen, D., and Foidart, J.M. (1998). Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4, 923–928.

    Article  PubMed  CAS  Google Scholar 

  • Basset, P., Wolf, C., and Chambon, P. (1993). Expression of the stromelysin-3 gene in fìbroblastic cells of invasive carcinomas of the breast and other human tissues: A review. Breast Cancer Res. Treat. 24, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Bini, A., Wu, D., Schnuer, J., and Kudryk, B.J. (1999). Characterization of stromelysin 1 (MMP-3), matrilysin (MMP-7), and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin(ogen) fragments D-dimer and D-like monomer: NH2-terminal sequences of late- stage digest fragments. Biochemistry 38, 13928–13936.

    Article  PubMed  CAS  Google Scholar 

  • Bugge, T.H., Kombrinck, K.W., Xiao, Q., Holmbäck, K., Daugherty, C.C., Witte, D.P., and Degen, J.L. (1997). Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood 90, 4522–4531.

    PubMed  CAS  Google Scholar 

  • Chang, C. and Werb, Z. (2001). The many faces of metalloproteases: Cell growth, invasion, angiogenesis and metastasis. Trends Cell. Biol. 11, S37–S43.

    PubMed  CAS  Google Scholar 

  • Coussens, L.M., Fingleton, B., and Matrisian, L.M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 295, 2387–2392.

    Article  PubMed  CAS  Google Scholar 

  • Coussens, L.M., Tinkle, C.L., Hanahan, D., and Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, H.C., Fingleton, B.M., Rudolph-Owen, L.A., Goss, K.J.H., Rubinfeld, B., Polakis, P., and Matrisian, L.M. (1999). The metalloproteinase matrilysin is a target of b-catenin transactivation in intestinal tumors. Oncogene 18, 2883–2891.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, H.C., Scoggins, C.R., Washington, M.K., Matrisian, L.M., and Leach, S.D. (2002). Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J. Clin. Invest. 109, 1437–1444.

    PubMed  CAS  Google Scholar 

  • DeClerck, Y.A., Imren, S., Montgomery, A.M P., Mueller, B.M., Reisfeld, R.A., and Laug, W.E. (1997). Proteases and protease inhibitors in tumor progression. Adv. Exp. Med. Biol. 425, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Dong, Z., Kumar, R., Yang, X., and Fidler, I.J. (1997). Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–810.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, M.J. (1996). Proteases as prognostic markers in cancer. Clin. Cancer Res. 2, 613–618.

    PubMed  CAS  Google Scholar 

  • Emonds-Alt, X., Quisquater, E., and Vaes, G. (1980). Proteoglycan- and fibrin-degrading neutral proteinase activities of Lewis lung carcinoma cells. Eur. J. Cancer 16, 1257–1261.

    Article  PubMed  CAS  Google Scholar 

  • Freije, J.M., Diez Itza, I., Balbin, M., Sanchez, L.M., Blasco, R., Tolivia, J., and Lopez Otin, C. (1994). Molecular cloning and expression of collagenase-3,a novel human matrix metalloproteinase produced by breast carcinomas. J. Biol. Chem. 269, 16766–16773.

    PubMed  CAS  Google Scholar 

  • Ginestra, A., Monea, S., Seghezzi, G., Dolo, V., Nagase, H., Mignatti, P., and Vittorelli, M.L. (1997). Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. J. Biol. Chem. 272, 17216–17222.

    Article  PubMed  CAS  Google Scholar 

  • Grant, G.M., Giambernardi, T.A., Grant, A.M., and Klebe, R.J. (1999). Overview of expression of matrix metalloproteinases (MMP-17, MMP- 18, and MMP-20) in cultured human cells. Matrix Biol. 18, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Gray, ST., Wilkins, R.J., and Yun, K. (1992). Interstitial collagenase gene expression in oral squamous cell carcinoma. Am. J. Pathol. 141, 301–306.

    PubMed  CAS  Google Scholar 

  • Gray, ST., Yun, K., Motoori, T., and Kuys, Y.M. (1993). Interstitial collagenase gene expression in colonic neoplasia. Am. J. Pathol. 143, 663–671.

    PubMed  CAS  Google Scholar 

  • Guo, H.M., Majmudar, G., Jensen, T.C., Biswas, C, Toole, B.P., and Gordon, M.K. (1998). Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene 220,99–108.

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Dantona, E., Ramos-DeSimone, N., Sipley, J., Nagase, H., French, D.L., and Quigley, J.P. (1999).Activation of ProMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann. NY Acad. Sci. 878, 372–387.

    Article  PubMed  CAS  Google Scholar 

  • Hajjar, K.A. and Deora, A. (2000). New concepts in fibrinolysis and angiogenesis. Curr Atheroscler. Rep. 2,417–421.

    Article  PubMed  CAS  Google Scholar 

  • Hiller, O., Lichte, A., Oberpichler, A., Kocourek, A., and Tschesche, H. (2000). Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J. Biol. Chem. 275, 33008–33013.

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka, N., Allen, E., Apel, I.J., Gyetko, M.R., and Weiss, S.J. (1998). Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95, 365–377.

    Article  PubMed  CAS  Google Scholar 

  • Holmbeck, K., Bianco, P., Caterina, J., Yamada, S., Kromer, M., Kuznetsov, S.A., Mankani, M., Robey, P.G.,Poole, A.R., Pidoux, I., Ward, J.M., and Birkedal-Hansen, H. (1999). MTl-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99,81–92.

    Article  PubMed  CAS  Google Scholar 

  • Isogai, C., Laug, W.E., Shimada, H., Declerck, P.J., Stins, M.F., Durden, D.L., Erdreich-Epstein, A., and DeClerck, Y.A. (2001). Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res. 61, 5587–5594.

    PubMed  CAS  Google Scholar 

  • Jilek, F. and Hormann, H. (1977). Cold-insoluble globulin, II[1,2]. Cyanogen bromide and plasminolysis fragments containing a label introduced by transamidation. Hoppe Seylers. Z. Physiol. Chem. 358, 1165–1168.

    PubMed  CAS  Google Scholar 

  • Kajita, M., Itoh, Y., Chiba, T., Mori, H., Okada, A., Kinoh, H., and Seiki, M. (2001). Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell. Biol. 153, 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Knauper, V., Will, H., Lopez-Otin, C., Smith, B., Atkinson, S.J., Stanton, H., Hembry, R.M., and Murphy, G.(1996). Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J. Biol. Chem. 271, 17124–17131.

    Article  PubMed  CAS  Google Scholar 

  • Koblinski, J.E., Ahram, M., and Sloane, B.F. (2000). Unraveling the role of proteases in cancer. Clin. Chim. Acta 291, 113–135.

    Article  PubMed  CAS  Google Scholar 

  • Koolwijk, P., Sidenius, N., Peters, E., Sier, C.F., Hanemaaijer, R., Blasi, F., and van Hinsbergh, V.W. (2001).Proteolysis of the urokinase-type plasminogen activator receptor by metalloproteinase-12: Implication for angiogenesis in fibrin matrices. Blood 97, 3123–3131.

    Article  PubMed  CAS  Google Scholar 

  • Levi, M., Moons, L., Bouche, A., Shapiro, S.D., Collen, D., and Carmeliet, P. (2001). Deficiency of urokinase-type plasminogen activator-mediated plasmin generation impairs vascular remodeling during hypoxia-induced pulmonary hypertension in mice. Circulation 103, 2014–2020.

    Article  PubMed  CAS  Google Scholar 

  • Lijnen, H.R. (2002). Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mosc.) 67, 92–98.

    Article  CAS  Google Scholar 

  • Lijnen, H.R., Arza, B., Van Hoef, B., Collen, D., and Declerck, P.J. (2000). Inactivation of plasminogen activator inhibitor-1 by specific proteolysis with stromelysin-1 (MMP-3). J. Biol. Chem. 275, 37645–37650.

    Article  PubMed  CAS  Google Scholar 

  • Lijnen, H.R., Silence, J., Lemmens, G., Frederix, L., and Collen, D. (1998a). Regulation of gelatinase activity in mice with targeted inactivation of components of the plasminogen/plasmin system. Thromb. Haemost. 79,1171–1176.

    PubMed  CAS  Google Scholar 

  • Lijnen, H.R., Ugwu, F., Bini, A., and Collen, D. (1998b). Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37, 4699–4702.

    Article  PubMed  CAS  Google Scholar 

  • Lund, L.R., Romer, J., Bugge, T.H., Nielsen, B.S., Frandsen, T.L., Degen, J.L., Stephens, R.W., and Dano, K.(1999). Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J.18, 4645–4656.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, A.R., Corbitt, R.H., Hartzler, J.L., and Thorgeirsson, U.P. (1990). Basement membrane type IV collagen degradation: Evidence for the involvement of a proteolytic cascade independent of metalloproteinases.Cancer Res. 50, 5997–6001.

    PubMed  CAS  Google Scholar 

  • Manes, S., Llorente, M., Lacalle, R.A., Gomez-Mouton, C., Kremer, L., Mira, E., and Martinez, A. (1999).The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J. Biol. Chem. 274, 6935–6945.

    Article  PubMed  CAS  Google Scholar 

  • Marchenko, G.N., Ratnikov, B.I., Rozanov, D.V., Godzik, A., Deryugina, E.I., and Strongin, A.Y. (2001).Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem. J. 356, 705–718.

    Article  PubMed  CAS  Google Scholar 

  • Matrisian, L.M. and Bowden, G.T. (1990). Stromelysin/transin and tumor progression. Semin. Cancer Biol. 1, 107–115.

    PubMed  CAS  Google Scholar 

  • Mazzieri, R., Masiero, L., Zanetta, L., Monea, S., Onisto, M., Garbisa, S., and Mignatti, P. (1997). Control of type IV collagenase activity by components of the urokinase-plasmin system: A regulatory mechanism with cell-bound reactants. EMBO J. 16, 2319–2332.

    Article  PubMed  CAS  Google Scholar 

  • McCawley, L.J. and Matrisian, L.M. (2001). Matrix Metalloproteinases: They’re not just for matrix anymore. Curr. Opin. Cell. Biol. 13, 534–540.

    Article  PubMed  CAS  Google Scholar 

  • McDonnell, S., Navre, M., Coffey, R., Jr., and Matrisian, L.M. (1991). Expression and localization of the matrix metalloproteinase pump- 1 (MMP-7) in human gastric and colon carcinomas. Mol. Carcinog. 4, 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Mignatti, P. and Rifkin, D.B. (1996). Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 49, 117–137.

    PubMed  CAS  Google Scholar 

  • Montgomery, A.M., DeClerck, Y.A., Langley, K.E., Reisfeld, R.A., and Mueller, B.M. (1993). Melanoma-mediated dissolution of extracellular matrix: Contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways. Cancer Res. 53, 693–700.

    PubMed  CAS  Google Scholar 

  • Montgomery, A.M., Mueller, B.M., Reisfeld, R.A., Taylor, S.M., and DeClerck, Y.A. (1994). Effect of tissue inhibitor of the matrix metalloproteinases-2 expression on the growth and spontaneous metastasis of a human melanoma cell line. Cancer Res. 54, 5467–5473.

    PubMed  CAS  Google Scholar 

  • Mueller, B.M. (1996). Different roles for plasminogen activators and metalloproteinases in melanoma metastasis. Curr. Top. Microbiol. Immunol. 213, 65–80.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, B.M., Yu, Y.B., and Laug, W.E. (1995). Overexpression of plasminogen activator inhibitor 2 in human melanoma cells inhibits spontaneous metastasis in scid mice. Proc. Natl. Acad. Sci. USA 92, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G., Ward, R., Gavrilovic, J., and Atkinson, S. (1992). Physiological mechanisms for metalloproteinase activation. Matrix Suppl. 1, 224–230.

    PubMed  CAS  Google Scholar 

  • Nagase, H. (1997). Activation mechanisms of matrix metalloproteinases. Biol. Chem. Hoppe Seyler 378, 151–160.

    CAS  Google Scholar 

  • Nagase, H. and Woessner, J.F., Jr. (1999). Matrix metalloproteinases. J. Biol. Chem. 274, 21491–21494.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, A.R., Fingleton, B., Rothenberg, M.L., and Matrisian, L.M. (2000). Matrix metalloproteinases: Biologic activity and clinical implications. J. Clin. Oncol. 18, 1135–1149.

    PubMed  CAS  Google Scholar 

  • Nielsen, B.S., Timshel, S., Kjeldsen, L., Sehested, M., Pyke, C., Borregaard, N., and Dano, K. (1996). 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. Int. J. Cancer. 65, 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Noel, A., Lefebvre, O., Maquoi, E., VanHoorde, L., Chenard, M.P., Mareel, M., and Foidart, J.M. (1996). Stromelysin-3 expression promotes tumor take in nude mice. J. Clin. Invest. 97, 1924–1930.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly, M.S., Wiederschain, D., Stetler-Stevenson, W.G., Folkman, J., and Moses, M.A. (1999). Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J. Biol. Chem. 274,29568–29571.

    Article  Google Scholar 

  • Okada, Y., Morodomi, T., Enghild, J.J., Suzuki, K., Yasui, A., Nakanishi, I., Salvesen, G., and Nagase, H. (1990). Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur. J. Biochem. 194, 721–730.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, B.C. and Sang, Q.A. (1997). Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J. Biol. Chem. 272, 28823–28825.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, M.S. (1997). Manipulating angiogenesis-from basic science to the bedside. Arterioscler. Thromb. Vasc. Biol. 17, 605–619.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, M.S. (2001). Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol 21, 1104–1117.

    Article  PubMed  CAS  Google Scholar 

  • Poulsom, R., Pignatelli, M., Stetler-Stevenson, W.G., Liotta, L.A., Wright, P.A., Jeffery, R.E., Longcroft, J.M., Rogers, L., and Stamp, G.W. (1992). Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am. J. Pathol. 141, 389–396.

    PubMed  CAS  Google Scholar 

  • Powell, W.C., Fingleton, B., Wilson, C.L., Boothby, M., and Matrisian, L.M. (1999). The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr. Biol. 9, 1441–1447.

    Article  PubMed  CAS  Google Scholar 

  • Powell, W.C. and Matrisian, L.M. (1996). Complex roles of matrix metalloproteinases in tumor progression. Curr. Top. Microbiol. Immunol. 213, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Pozzi, A., LeVine, W.F., and Gardner, H.A. (2002). Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21, 272–281.

    Article  PubMed  CAS  Google Scholar 

  • Pozzi, A., Moberg, P.E., Miles, L.A., Wagner, S., Soloway, P., and Gardner, H.A. (2000). Elevated matrix metallo-protease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc. Natl. Acad. Sci. USA 97, 2202–2207.

    Article  PubMed  CAS  Google Scholar 

  • Rao, J.S., Steck, P.A., Mohanam, S., Stetler-Stevenson, W.G., Liotta, L.A., and Sawaya, R. (1993). Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res. 53, 2208–2211.

    PubMed  CAS  Google Scholar 

  • Rosenthal, E.L., Johnson, T.M., Allen, E.D., Apel, I.J., Punturieri, A., and Weiss, S.J. (1998). Role of the plasminogen activator and matrix metalloproteinase systems in epidermal growth factor- and scatter factor-stimulated invasion of carcinoma cells. Cancer Res. 58, 5221–5230.

    PubMed  CAS  Google Scholar 

  • Santala, A., Saarinen, J., Kovanen, P., and Kuusela, P. (1999). Activation of interstitial collagenase, MMP-1, by Staphylococcus aureus cells having surface-bound plasmin: A novel role of plasminogen receptors of bacteria. FEBS Lett. 461, 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Sawaya, R.E., Yamamoto, M., Gokaslan, Z.L., Wang, S.W., Mohanam, S., Fuller, G.N., McCutcheon, I.E., Stetler-Stevenson, W.G., Nicolson, G.L., and Rao, J.S. (1996). Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin. Exp. Metastasis 14, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Schlechte, W., Murano, G., and Boyd, D. (1989). Examination of the role of the urokinase receptor in human colon cancer mediated laminin degradation. Cancer Res. 49, 6064–6069.

    PubMed  CAS  Google Scholar 

  • Seiki, M. (1996). Membrane type matrix metalloproteinase and tumor invasion. Curr. Top. Microbiol. Immunol. 213, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Shofuda, K., Moriyama, K., Nishihashi, A., Higashi, S., Mizushima, H., Yasumitsu, H., Miki, K., Sato, H., Seiki, M., and Miyazaki, K. (1998). Role of tissue inhibitor of metalloproteinases-2 (TIMP-2) in regulation of pro-gelatinase A activation catalyzed by membrane- type matrix metalloproteinase-1 (MT1-MRP) in human cancer cells. J. Biochem. (Tokyo) 124, 462–470.

    Article  CAS  Google Scholar 

  • Sounni, N.E., Baramova, E.N., Munaut, C., Maquoi, E., Frankenne, F., Foidart, J.M., and Noel, A. (2002). Expression of membrane type 1 matrix metalloproteinase (MT1-MMP) in A2058 melanoma cells is associated with MMP-2 activation and increased tumor growth and vascularization. Int. J. Cancer 98, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht, M.D., Lochter, A., Sympson, C.J., Huey, B., Rougier, J.P., Gray, J.W., Pinkel, D., Bissell, M.J., and Werb, Z. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W.G. (1990). Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 9, 289–303.

    Article  PubMed  CAS  Google Scholar 

  • Stetler Stevenson, W.G., Liotta, L.A., and Brown, P.D. (1992). Role of type IV collagenases in human breast cancer. Cancer Treat. Res. 61, 21–41.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura, Y., Ma, L.Q., Sun, B., Shimada, H., Laug, W.E., Seeger, R.C., and DeClerck, Y.A. (1999). The plasminogen-plasminogen activator (PA) system in neuroblastoma: Role of PA inhibitor-1 in metastasis. Cancer Res. 59, 1327–1336.

    PubMed  CAS  Google Scholar 

  • Sugiura, Y., Shimada, H., Seeger, R.C., Laug, W.E., and DeClerck, Y.A. (1998). Matrix metalloproteinases-2 and -9 are expressed in human neuroblastoma: Contribution of stromal cells to their production and correlation with metastasis. Cancer Res. 58, 2209–2216.

    PubMed  CAS  Google Scholar 

  • Takigawa, M., Nishida, Y., Suzuki, F., Kishi, J., Yamashita, K., and Hayakawa, T. (1990). Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem. Biophys. Res. Commun. 171, 1264–1271.

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto, H., Underwood, L.J., Shigemasa, K., Parmley, T.H., Wang, Y.X., Yan, Y., Clarke, J., and O’Brien, T.J. (1999). The matrix metalloprotease pump-1 (MMP-7, matrilysin): A candidate marker/target for ovarian cancer detection and treatment. Tumor Biol. 20, 88–98.

    Article  CAS  Google Scholar 

  • Uria, J.A., Stahle-Backdahl, M., Seiki, M., Fueyo, A., and Lopez-Otin, C. (1997). Regulation of collagenase-3 expression in human breast carcinomas is mediated by stromal-epithelial cell interactions. Cancer Res. 57, 4882–4888.

    PubMed  CAS  Google Scholar 

  • Vassalli, J.D. and Pepper, M.S. (1994). Tumour biology. Membrane proteases in focus. Nature 370, 14–15.

    Article  PubMed  CAS  Google Scholar 

  • Väisänen, A., Kallioinen, M., Taskinen, P.J., and Turpeenniemi-Hujanen, T. (1998). Prognostic value of MMP-2 immunoreactive protein (72 kD type IV collagenase) in primary skin melanoma. J. Pathol. 186, 51–58.

    Article  PubMed  Google Scholar 

  • Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro, S.D., Senior, R.M., and Werb, Z. (1998). MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422.

    Article  PubMed  CAS  Google Scholar 

  • Whitelock, J.M., Murdoch, A.D., Iozzo, R.V., and Underwood, PA. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 10079–10086.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.L., Heppner, K.J., Labosky, P.A., Hogan, B.L.M., and Matrisian, L.M. (1997). Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl. Acad. Sci. USA 94, 1402–1407.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.L., Ouellette, A.J., Satchell, D.P., Ayabe, T., López-Boado, Y.S., Stratman, J.L., Hultgren, S.J.,Matrisian, L.M., and Parks, W.C. (1999). Regulation of intestinal a-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Windsor, L.J., Grenett, H., Birkedal-Hansen, B., Bodden, M.K., Engler, J.A., and Birkedal-Hansen, H. (1993).Cell type-specific regulation of SL-1 and SL-2 genes. Induction of the SL-2 gene but not the SL-1 gene by human keratinocytes in response to cytokines and phorbolesters. J. Biol. Chem. 268, 17341–17347.

    PubMed  CAS  Google Scholar 

  • Zucker, S., Cao, J., and Chen, W.T. (2000). Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19, 6642–6650.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

DeClerck, Y.A., Laug, W.E. (2003). Matrix Metalloproteinases and the Plasminogen System in Tumor Progression. In: Waisman, D.M. (eds) Plasminogen: Structure, Activation, and Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0165-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0165-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4949-5

  • Online ISBN: 978-1-4615-0165-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics