Human Plasminogen: Structure, Activation, and Function

  • Francis J. Castellino
  • Victoria A. Ploplis


The conversion of the plasma zymogen, plasminogen (Pg), to the serine protease plasmin (Pm) is a critical event associated with the activation of the fibrinolytic system (Collen, 1980). The primary vascular function of Pm is to maintain patency by degrading fibrin-rich thrombi. Localization of this proteolytic activity at the site of a developing thrombus, as well as the protection of Pm and its activators from circulating inhibitors are essential in regulating fibrinolysis (Collen, 1980). The identification of cell surface receptors for Pg/Pm and its activators and the demonstration that Pm can either directly or indirectly degrade extracellular matrices have implicated Pm in mediating cell migration, a critical event in a number of physiologies, e.g., wound healing, embryogenesis, angiogenesis, and pathologies, e.g., tumor growth and metastasis processes (Mak et al, 1976; Strickland et al., 1976; Gross et al., 1983; Ossowski and Reich, 1983; Dano et al, 1985; Nielsen et al., 1988; Schafer et al., 1994). Therefore, aside from its vascular function in controlling thrombus formation and dissolution, Pg may play a broad and diverse role in a number of diverse biological events.


Plasminogen Activator Tissue Factor Pathway Inhibitor Plasminogen Activator Activity Human Fibrinogen Human Plasminogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, G.S., Korinek, B.W., Bowman, G.H., and Yang, F. (1986). The human transferrin gene: 5’ region contains conserved sequences which match the control elements regulated by heavy metals, glucocorticoids and acute phase reaction. Gene 49, 167–175.PubMedCrossRefGoogle Scholar
  2. Aljaersig, N., Davies, A., and Fletcher, A. (1977). Fibrin and fibrinogen proteolysis products: Comparison between gel filtration and SDS polyacrylamide electrophoresis analysis. Thromb. Haemost. 38, 524–525.Google Scholar
  3. Aoki, N., Moroi, M., Sakata, Y., Yoshida, N., and Matsuda, M. (1978). Abnormal plasminogen-a hereditary molecular abnormality found in a patient with recurrent thrombosis. J. Clin. Invest. 61, 1186–1195.PubMedCrossRefGoogle Scholar
  4. Astrup, T. and Sterndorff, I. (1952). An activator of plasminogen in normal urine. Proc. Soc. Exp. Biol. Med. 81, 675–678.PubMedGoogle Scholar
  5. Azuma, H., Uno, Y., Shigekiyo, T., and Saito, S. (1993). Congenital plasminogen deficiency caused by a Ser572 to Pro mutation. Blood 82, 475–480.PubMedGoogle Scholar
  6. Barlow, G.H. (1976). Urinary and kidney cell plasminogen activator (urokinase). In L. Lorand (ed.), Methods in Enzymology. Academic Press, San Diego, CA. 45, 239–244.Google Scholar
  7. Berg, A. and Sjöbring, U. (1993). PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J. Biol. Chem. 268, 25417–25424.Google Scholar
  8. Bernik, M.B. and Kwaan, H.C. (1969). Plasminogen activator activity in cultures from human tissue. An immunological study. J. Clin. Invest. 48, 1740–1753.PubMedCrossRefGoogle Scholar
  9. Blomback, B. and Vestermark, A. (1958). Isolation of fibrinopeptides by chromatography. Arkiv. Kemi. 12, 173.Google Scholar
  10. Bohmfalk, J.F. and Fuller, G.M. (1980). Plasminogen is synthesized by primary cultures of rat hepatocytes. Science 209, 408–410.PubMedCrossRefGoogle Scholar
  11. Bonnefoy, A. and Legrand, C. (2000). Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin,and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb. Res. 98,323–332.PubMedCrossRefGoogle Scholar
  12. Brockway, W.J. and Castellino, F.J. (1972). Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch. Biochem. Biophys. 151, 194–199.PubMedCrossRefGoogle Scholar
  13. Brockway, W.J. and Castellino, F.J. (1974). A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry 13, 2063–2070.PubMedCrossRefGoogle Scholar
  14. Chibber, B.A.K. and Castellino, F.J. (1986). Regulation of the streptokinase-mediated activation of human plasminogen by fibrinogen and chloride ions. J. Biol. Chem. 261, 5289–5295.PubMedGoogle Scholar
  15. Chibber, B.A.K., Morris, J.P., and Castellino, F.J. (1985). Effects of human fibrinogen and its cleavage products on activation of human plasminogen by streptokinase. Biochemistry 24, 3429–3434.PubMedCrossRefGoogle Scholar
  16. Chibber, B.A.K., Radek, J.T., Morris, J.P., and Castellino, F.J. (1986). Rapid formation of an anion sensitive active site in stoichiometric complexes of streptokinase and human [Glul]plasminogen. Proc. Natl. Acad.Sci. USA 83, 1237–1241.PubMedCrossRefGoogle Scholar
  17. Collen, D., DeCock, F., Vanlinhout, I., Declerck, P.J., Lijnen, H.R., and Stassen, J.M. (1992). Comparative thrombolytic and immunogenic properties of staphylokinase and streptokinase. Fibrinolysis 6, 232–242.Google Scholar
  18. Collen, D., Schlott, B., Engelborghs, Y., Van Hoef, B., Hartmann, M., Lijnen, H.R., and Behnke, D. (1993).On the mechanism of the activation of human plasminogen by recombinant staphylokinase. J. Biol. Chem. 268, 8284–8289.PubMedGoogle Scholar
  19. Dano, K., Andreasen, P.A., Grondahl-Hansen, J., Kristensen, P., Nielsen, L.S., and Skriver, L. (1985). Plasminogen activators, tissue degradation and cancer. Adv. Cancer Res. 44, 139–266.PubMedCrossRefGoogle Scholar
  20. Davidson, D.J., Higgins, D.L., and Castellino, F.J. (1990). Plasminogen activator activities of equimolar complexes of streptokinase with variant recombinant plasminogens. Biochemistry 29, 3585–3590.PubMedCrossRefGoogle Scholar
  21. DeMunk, G.A.W. and Rijken, D.C. (1990). Fibrinolytic properties of single chain urokinase-type plasminogen activator (prourokinase). Fibrinolysis 4, 1–9.Google Scholar
  22. De Vries, C., Vaerman, H., and Pannekoeck, H. (1989). Identification of the domains of tissue-type plasminogen activator involved in augmented binding to fibrin after limited digestion with plasmin. J. Biol. Chem. 264,12604–12610.PubMedGoogle Scholar
  23. DíCosta, S.S. and Boyle, M.D.P. (1998). Interaction of a group A Streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to occupancy of surface plasmin-binding structures. Microb. Pathog. 24, 341–349.CrossRefGoogle Scholar
  24. Duffy, M.J. (1990). Plasminogen activators and cancer. Blood Coag. Fibrin. 1, 681–687.Google Scholar
  25. Fleury, V., Lijnen, H.R., and Angles-Cano, E. (1993). Mechanism of the enhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrinolysis. J. Biol. Chem. 268, 18554–18559.PubMedGoogle Scholar
  26. Forsgren, M., Raden B., Israelsson M., Larsson K., and Hedén, L-O. (1987). Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett. 213, 254–260.PubMedCrossRefGoogle Scholar
  27. Fowler, W.E., Fretto, L.J., Erickson, H.P., and McKee, P.A. (1980). Electron microscopy of plasmic fragments human fibrinogen as related to trinodular structure of the intact molecule. J. Clin. Invest. 66, 50–56.PubMedCrossRefGoogle Scholar
  28. Fowlkes, D.M., Mullis, M.T., Comeau, CM., and Crabtree, G.R. (1984). Potential basis for regulation of the coordinately expressed fibrinogen genes: Homology in the 5’ flanking regions. Proc. Natl. Acad. Sci. USA. 81, 2313–2316.PubMedCrossRefGoogle Scholar
  29. Gonzalez-Gronow, M., Violand, B.N., and Castellino, F.J. (1977). Purification and some properties of the glu- and lys- human plasmin heavy chains. J. Biol. Chem. 252, 2175–2177.PubMedGoogle Scholar
  30. Grella, D.K. and Castellino, F.J. (1997). Activation of human plasminogen by staphylokinase. Direct evidence that preformed plasmin is necessary for activation to occur. Blood 89, 1585–1589.PubMedGoogle Scholar
  31. Gross, J.L., Moscatelli, D., and Rifkin, D.B. (1983). Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc. Natl. Acad. Sci. USA. 80, 2623–2627.PubMedCrossRefGoogle Scholar
  32. Hall, C.E. and Slayter, H.S. (1959). The fibrinogen molecule: Its size, shape, and mode of polymerization. J. Biophys. Biochem. Cytol. 5, 11–15.PubMedCrossRefGoogle Scholar
  33. Hamilton, K.K., Fretto, L.J., Grierson, D.S., and McKee, P.A. (1985). Effects of plasmin on von Willebrand factor multimers. Degradation in vitro and stimulation of release in vivo. J. Clin. Invest. 76, 261–270.PubMedCrossRefGoogle Scholar
  34. Hanbucken, F.W., Schneider, J., Gunzler, W.A., Friderichs, E., Giertz, H., and Flohe, L. (1987). Selective fibrinolytic activity of recombinant non-glycosylated human pro-urokinase (single chain urokinase-type plasminogen activator) from bacteria. Arzneimittel Forschung 37, 993–997.PubMedGoogle Scholar
  35. Harpel, P.C., Chang, T.S., and Verderber, E. (1985). Tissue plasminogen activator and urokinase mediate the binding of Glu-plasminogen to plasmin fibrin I. Evidence for new binding sites in plasmin-degraded fibrin I. J. Biol. Chem. 260, 4432–4440.PubMedGoogle Scholar
  36. Hayes, M.L. and Castellino, F.J. (1979a). Carbohydrate of human plasminogen variants. II. Structure of the asparagine-linked oligosaccharide unit. J. Biol. Chem. 254, 8772–8776.PubMedGoogle Scholar
  37. Hayes, M.L. and Castellino, F.J. (1979b). Carbohydrate of human plasminogen variants. III. Structure of the O-glycosidically-linked oligosaccharide unit. J. Biol. Chem. 254, 8777–8780.PubMedGoogle Scholar
  38. Higgins, D.L. and Vehar, G.A. (1987). Interaction of one-chain and two-chain tissue plasminogen activator with intact and plasmin-degraded fibrin. Biochemistry 26, 7786–7791.PubMedCrossRefGoogle Scholar
  39. Hobart, M.J. (1979). Genetic polymorphism of human plasminogen. Ann. Hum. Genet. 42, 419–423.PubMedCrossRefGoogle Scholar
  40. Hoover, G.J., Menhart, N., Martin, A., Warder, S., and Castellino, F.J. (1993). Amino acids of the recombinant kringle 1 domain of human plasminogen that stabilize its interaction with ω-amino acids. Biochemistry 32, 10936–10943.PubMedCrossRefGoogle Scholar
  41. Horrevoets, A.J.G., Smilde, A.E., Fredenburgh, J.C., Pannekoek, H., and Nesheim, M.E. (1995). The activation-resistant conformation of recombinant human plasminogen is stabilized by basic residues in the amino-terminal hinge region. J. Biol. Chem. 270, 15770–15776.PubMedCrossRefGoogle Scholar
  42. Hortin, G.L. (1990). Isolation of glycopeptides containing O-linked oligosaccharides by lectin affinity chromatography on jacalin-agarose. Anal. Biochem. 191, 262–267.PubMedCrossRefGoogle Scholar
  43. Hoylaerts, M., Rijken, D.C., Lijnen, H.R., and Collen, D. (1982). Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J. Biol. Chem. 257, 2912–2919.PubMedGoogle Scholar
  44. Ichinose, A., Espling, E.S., Takamatsu, J., Saito, H., Shinmyozu, K., Maruyama, I., Petersen, T.E., and Davie, E.W. (1991). Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis. Proc. Natl. Acad. Sci. USA. 88, 115–119.PubMedCrossRefGoogle Scholar
  45. Jackson, K.W. and Tang, J. (1982). Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21, 6620–6625.PubMedCrossRefGoogle Scholar
  46. Jenkins, G.R., Seiffart, D., Parmer, R.J., and Miles, L.A. (1997). Regulation of plasminogen gene expression by interleukin-6. Blood 89, 2394–2403.PubMedGoogle Scholar
  47. Juranic, Z., Tomin, R., and Spuzic, I. (1989). Considerations on the role of the plasminogen activators/plasmin system in the generation of conditions for more efficient interaction of malignant cells with large granular lymphocytes. Res. Immunol. 140, 281–283.PubMedCrossRefGoogle Scholar
  48. Kida, M., Wakabayashi, S., and Ichinose, A. (1997). Expression and induction by IL-6 of the normal and variant genes for human plasminogen. Biochem. Biophys. Res. Commun. 230, 129–132.PubMedCrossRefGoogle Scholar
  49. Kraft, J., Lieb, W., Zeitler, P., and Schuster, V. (2000). Ligneous conjunctivitis in a girl with severe type I plasminogen deficiency. Graefe’s Arch. Clin. Exp. Ophthalmal. 238, 797–800.CrossRefGoogle Scholar
  50. Kwaan, H.C. (1980). Fibrinogen-fibrin degradation products. Ann. Clin. Lab. Sci. 10, 234–237.PubMedGoogle Scholar
  51. Levin, E.G. (1983). Latent tissue plasminogen activator produced by human endothelial cells in culture: Evidence for an enzyme-inhibitor complex. Proc. Natl. Acad. Sci. USA. 80, 6804–6808.PubMedCrossRefGoogle Scholar
  52. Li, A. and Wun, T.C. (1998). Proteolysis of tissue factor pathway inhibitor (TFPI) by plasmin: Effect on TFPI activity. Thromb. Haemost. 80, 423–427.PubMedGoogle Scholar
  53. Lijnen, H.R. (2001). Role of the fibrinolytic and matrix metalloproteinase systems in arterial neointima formation after vascular injury. Verh. K. Acad. Geneeskd. Belg. 63, 605–622.PubMedGoogle Scholar
  54. Lijnen, H.R., De Cook, F., Van Hoef, B., Schlott, B., and Collen, D. (1994). Characterization of the interaction between plasminogen and staphylokinase. Eur. J. Biochem. 224, 143–149.PubMedCrossRefGoogle Scholar
  55. Lijnen, H.R., Van Hoef, B., Nelles, L., and Collen, D. (1990). Plasminogen activation with single-chain urokinase-type plasminogen activator (scu-PA). Studies with active site mutagenized plasminogen (Ser740 → Ala) and plasmin-resistant scu-PA (Lys158 → Glu). J. Biol. Chem. 265, 5232–5236.PubMedGoogle Scholar
  56. Lijnen, H.R., Zamarron, C., Blaber, M., Winkler, M.E., and Collen, D. (1986). Activation of plasminogen by pro-urokinase. I. Mechanism. J. Biol. Chem. 261, 1253–1258.PubMedGoogle Scholar
  57. Liu, Y., Lyons, R.M., and McDonagh, J. (1988). Plasminogen San Antonio: An abnormal plasminogen with a more cathodic migration, decreased activation and associated thrombosis. Thromb. Haemost. 59, 49–53.PubMedGoogle Scholar
  58. Loscalzo, J. (1988). Structural and kinetic comparison of recombinant human single- and two-chain tissue plasminogen activator. J. Clin. Invest. 82, 1391–1397.PubMedCrossRefGoogle Scholar
  59. Maeda, M. (1985). Nucleotide sequence of the haptoglobin and haptoglobin-related gene pair. J. Biol. Chem. 260, 6698–6709.PubMedGoogle Scholar
  60. Magnusson, S., Petersen, T.E., Sottrup-Jensen, L., and Claeys, H. (1975). Complete primary structure of prothrombin: Isolation and reactivity of ten carboxylated glutamic residues and regulation of prothrombin activation by thrombin. In E. Reich, D.B. Rifkin, and E. Shaw (eds) Proteases and biological control. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY. 123–149.Google Scholar
  61. Mak, T.W., Rutledge, G., and Sutherland, D.J. (1976). Androgen-dependent fibrinolytic activity in murine mammary carcinoma (Shionogi SC 115) cells in vitro. Cell 7, 223–226.PubMedCrossRefGoogle Scholar
  62. Malke, H., Roe, B., and Ferretti, J.J. (1985). Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene 34, 357–362.PubMedCrossRefGoogle Scholar
  63. Mao, S.S., Cooper, CM., Wood, T., Shafer, J.A., and Gardell, S.J. (1999). Characterization of plasmin-mediated activation of plasma procarboxypeptidase B. Modulation by glycosaminoglycans. J. Biol. Chem. 274, 35046–35052.PubMedCrossRefGoogle Scholar
  64. Marti, D.N., Schaller, J., and Llinás, M. (1999). Solution structure and dynamics of the plasminogen kringle 2-AMCHA complex: 31,-helix in homologous domains. Biochemistry 38, 15741–15755.PubMedCrossRefGoogle Scholar
  65. McCance, S.G., Menhart, N., and Castellino, F.J. (1994). Amino acid residues of the kringle-4 and kringle-5 domains of human plasminogen that stabilize their interactions with omega-amino acid ligands. J. Biol. Chem. 269, 32405–32410.PubMedGoogle Scholar
  66. McCoy, H.F., Broder, C.C., and Lottenberg, R. (1991). Streptokinase produced by pathogenic group C streptococci demonstrate species-specific plasminogen activation. J. Inf. Dis. 164, 515–521.CrossRefGoogle Scholar
  67. McKee, P.A., Andersen, J.C., and Switzer, M.E. (1975). Molecular structural studies of human factor VIII. Ann. N.Y. Acad. Sci. 240, 8–33.PubMedCrossRefGoogle Scholar
  68. McLean, J.W., Tomlinson, J.E., Kuang W-J., Eaton, D.L., Chen, E.Y., Gless, G.M., Scanu, A.M., and Lawn, R.M. (1987). CDNA sequence of human apolipoprotein (a) is homologous to plasminogen. Nature 330, 132–137.PubMedCrossRefGoogle Scholar
  69. McMullen, B.A. and Fujikawa, K. (1985). Amino acid sequence of the heavy chain of human α-factor Xlla (activated Hageman factor). J. Biol. Chem. 260, 5328–5341.PubMedGoogle Scholar
  70. Menhart, N., McCance, S.G., Sehl, L.C., and Castellino, F.J. (1993). Functional independence of the kringle 4 and kringle 5 regions of human plasminogen. Biochemistry 32, 8799–8806.PubMedCrossRefGoogle Scholar
  71. Menhart, N., Sehl, L.C., Kelley, R.F., and Castellino, F.J. (1991). Construction, expression and purification of recombinant kringle 1 of human plasminogen and analysis of its interaction with ω-amino acids. Biochemistry 30, 1948–1957.PubMedCrossRefGoogle Scholar
  72. Meroni, G., Buraggi, G., Mantovani, R., and Taramelli, R. (1996). Motifs resembling hepatocyte nuclear factor 1 and activator protein 3 mediate the tissue specificity of the human plasminogen gene. Eur. J. Biochem. 236,373–382.PubMedCrossRefGoogle Scholar
  73. Miles, L.A., Dahlberg, C.M., and Plow, E.F. (1988). The cell binding domains of plasminogen and their function in plasma. J. Biol. Chem. 263, 11928–11934.PubMedGoogle Scholar
  74. Mingers, A.M., Philapitsch, A., Zeitler, P., Schuster, V., Schwarz, H.P., and Kreth, H.W. (1999). Human homo-zygous type I plasminogen deficiency and ligneous conjunctivitis. APMIS. 107, 62–72.PubMedCrossRefGoogle Scholar
  75. Miyata, T., Iwanaga, S., Sakata, Y., and Aoki, N. (1982). Plasminogen Tochigi: Inactive plasmin resulting from replacement of alanine 600 by threonine in the active site. Proc. Natl. Acad. Sci. USA. 79, 6132–6136.PubMedCrossRefGoogle Scholar
  76. Mosesson, M.W., Hainfeld, J., Wall, J., and Haschenmeyer, R. (1981). Identification and mass analysis of human fibrinogen molecules and their domains by scanning transmission electron microscopy. J. Mol. Biol. 153,695–718.PubMedCrossRefGoogle Scholar
  77. Murray, J.C., Buetow, K.H., Donovan, M., Hornung, S., Motulsky, A.G., Disteche, C., Dyer, K., Swisshelm, K., Anderson, J., Giblet, E., Sadler, E., Eddy, R., and Shows, T.B. (1987). Linkage disequilibrium of plasminogen polymorphisms and assignment of the gene to human chromosome 6q26-6q27. Am. J. Hum. Genet. 40, 338–350.PubMedGoogle Scholar
  78. Nielsen, L.S., Kallerman, G.M., Behrendt, N., Picone, R., Dano, K., and Blasi, F. (1988). A 55,000-65,000 Mr receptor for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification. J. Biol. Chem. 263, 2358–2363.PubMedGoogle Scholar
  79. Norton, P.A. and Slayter, H.S. (1981). Immune labeling of the D and E regions of human fibrinogen by electron microscopy. Proc. Natl. Acad. Sci. USA. 78, 1661–1665.PubMedCrossRefGoogle Scholar
  80. Ossowski, L. and Reich, E. (1983). Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35, 611–619.PubMedCrossRefGoogle Scholar
  81. Pannell, R. and Gurewich, V. (1987). The activation of plasminogen by single-chain urokinase or by two-chain urokinase-a demonstration that single-chain urokinase has a low catalytic activity (pro-urokinase). Blood 69, 22–26.PubMedGoogle Scholar
  82. Patthy, L., Trexler, M., Vali Z., Banyai, L., and Varadi, A. (1984). Kringles: Modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteins. FEBS Lett. 171, 131–136.PubMedCrossRefGoogle Scholar
  83. Pennica, D., Holmes, W.E., Kohr, W.J., Harkins, R.N., Vehar, G.A., Ward, C.A., Bennett, W.F., Yelverton, E., Seeburg, PH., Heyneker, H.L., Goeddel, D.V., and Collen, D. (1983). Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301, 214–221.PubMedCrossRefGoogle Scholar
  84. Petersen, L.C., Lund, L.R., Nielsen, L.S., Dano, K., and Skriver, L. (1988). One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J. Biol. Chem. 263, 11189–11195.PubMedGoogle Scholar
  85. Petersen, T.E., Martzen, M.R., Ichinose, A., and Davie, E.W. (1990). Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system. J. Biol. Chem. 265, 6104–6111.PubMedGoogle Scholar
  86. Pirie-Sheperd, S.R., Stevens, R.D., Andon, N.L., Enghild, J.J., and Pizzo, S.V. (1997). Evidence for a novel O-linked sialylated trisccharide on Ser-248 of human plasminogen 2. J. Biol. Chem. 272, 7408–7411.CrossRefGoogle Scholar
  87. Price, T.M., Strong, D.D., Rudee, M.L., and Doolittle, R.F. (1981). Shadow cast electron microscopy of fibrinogen with antibody fragments bound to specific regions. Proc. Natl. Acad. Sci. USA. 78, 200–204.PubMedCrossRefGoogle Scholar
  88. Raum, D., Marcus, D., and Alper, C.A. (1980). Genetic polymorphism of human plasminogen. Am. J. Hum. Genet. 32, 681–689.PubMedGoogle Scholar
  89. Raum, D., Marcus, D., Alper, C.A., Levey, R., Taylor, P.D., and Starzl, T.E. (1980). Synthesis of human plasminogen by the liver. Science 208, 1036–1037.PubMedCrossRefGoogle Scholar
  90. Robbins, K.C., Summaria L., Hsieh, B., and Shah, R.J. (1967). The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J. Biol. Chem. 242, 2333–2342.PubMedGoogle Scholar
  91. Rodriguez, P., Collen, D., and Lijnen, H.R. (1995). Binding of streptokinase and staphylokinase to plasminogen. Fibrinolysis 9, 298–303.Google Scholar
  92. Saito, H., Hamilton, S.M., Tavill A.S., Louis L., and Ratnoff, O.D. (1980). Production and release of plasminogen by the liver. Proc. Natl. Acad. Sci. USA. 11, 6837–6840.CrossRefGoogle Scholar
  93. Sakai, M., Watanuki, M., and Matsuo, O. (1989). Mechanism of fibrin-specific fibrinolysis by staphylokinase: Participation of a2-plasmin inhibitor. Biochem. Biophys. Res. Commun. 162, 830–837.PubMedCrossRefGoogle Scholar
  94. Sako, T., Sawaki, S., Sakurai, T., Ito, S., Yoshizawa, Y., and Kondo, I. (1983). Cloning and expression of the staphylokinase gene of Staphylococcus aureus in E. Coli. Molec. Gen. Genet. 190, 271–277.CrossRefGoogle Scholar
  95. Sako, T. and Tsuchida, N. (1983). Nucleotide sequence of the staphylokinase gene from Staphylococcus aureus. Nucleic Acids Res. 11,7679–7693.PubMedCrossRefGoogle Scholar
  96. Schafer, B.M., Maier, K., Eickhoff, U., Todd, R.F., and Kramer, M.D. (1994). Plasminogen activation in healing human wounds. Am. J. Pathol. 144, 1269–1280.PubMedGoogle Scholar
  97. Scharrer, I.M., Wohl, R.C., Hach, V., Sinio, L., Boreisha, I., and Robbins, K.C. (1986). Investigation of a congenital abnormal plasminogen, Frankfurt I, and its relationship to thrombosis. Thromb. Haemost. 55, 396–401.PubMedGoogle Scholar
  98. Schick, L.A. and Castellino, F.J. (1974). Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase-human plasminogen activator complex. Biochem. Biophys. Res. Comm. 57, 47–54.PubMedCrossRefGoogle Scholar
  99. Schuster, V., Mingers, A.M., Seidenspinner, S., Nüssgens, Z., Pukcrop, T., and Kreth, H.W. (1997). Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood 90, 958–966.PubMedGoogle Scholar
  100. Schuster, V., Seidenspinner, S., Zeitler, P., Escher, C., Pleyer, U., Bemauer, W., Stiehm, E.R., Isenberg, S., Seregard, S., Olsson, T., Mingers, A.M., Schambeck, C, and Kreth, H.W. (1999). Compound-herozygous mutations in the plasminogen gene predispose to the development of ligneous conjunctivitis. Blood 93, 3457–3466.PubMedGoogle Scholar
  101. Schwartz, M.L., Pizzo, S.V., Hill, R.L., and McKee, P.A. (1973). Human factor XII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J. Biol. Chem. 248, 1395–1407.PubMedGoogle Scholar
  102. Sehl, L.C. and Castellino, F.J. (1990). Thermodynamic properties of the binding of a, ?-amino acids to the isolated kringle 4 region of human plasminogen as determined by high sensitivity titration calorimetry. J. Biol. Chem. 265, 5482–5486.PubMedGoogle Scholar
  103. Shafer, J.A. and Higgins, D.L. (1988). Human fibrinogen. Crit. Rev. Clin. Lab. Sci. 26, 1–41.PubMedCrossRefGoogle Scholar
  104. Siefring, G.E. and Castellino, F.J. (1976). The interaction of streptokinase and plasminogen. Isolation and characterization of a streptokinase degradation product. J. Biol. Chem. 251, 3913–3921.PubMedGoogle Scholar
  105. Soria, J., Soria, C, Bertrand, O., Dunn, F., Drouet, L., and Caen, J.P. (1983). Plasminogen Paris I: Congenital abnormal plasminogen and its incidence in thrombosis. Thromb. Res. 32, 229–238.PubMedCrossRefGoogle Scholar
  106. Sottrup-Jensen, L., Claeys, H., Zajdel, M., Petersen, T.E., and Magnusson, S. (1978). The primary structure of human plasminogen: Isolation of two lysine-binding fragments and one “mini” plasminogen (MW, 38000) by elastase-catalyzed-specific limited proteolysis. Prog. Chem. Fibrinol. Thrombol. 3, 191–209.Google Scholar
  107. Steffens, G.J., Günzler, W.A., Ötting, F., Frankus, E., and Flohé, L. (1982). The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe-Seyler’s Z. Physiol. Chem. 363, 1043–1058.PubMedCrossRefGoogle Scholar
  108. Strickland, S., Reich, E., and Sherman, M.I. (1976). Plasminogen activator in early embryogenesis: Enzyme production by trophoblast and parietal endoderm. Cell 9, 231–240.PubMedCrossRefGoogle Scholar
  109. Suenson, E. and Thorsen, S. (1981). Secondary-site binding of glu-plasmin, lys-plasmin and miniplasmin to fibrin. Biochem. J. 197, 619–628.PubMedGoogle Scholar
  110. Telford, J.N., Nagy, J.A., Hatcher, PA., and Scheraga, H.A. (1980). Localization of peptide fragments in the fibrinogen molecule by immunoelectron microscopy. Proc. Natl. Acad. Sci. USA. 77, 2372–2376.PubMedCrossRefGoogle Scholar
  111. Tsutsumi, S., Saito, T., Sakata, T., Miyata, T., and Ichinose, A. (1996). Genetic diagnosis of dysplasminogenemia: Detection of an Ala601-Thr mutation in 118 out of 125 families and identification of a new Asp676-Asn mutation. Thromb. Haemost. 76, 135–138.PubMedGoogle Scholar
  112. Ueshima, S., Okada, K., Matsumoto, H., Takaishi, T., Fukao, H., and Matsuo, O. (1996). Effects of endothelial cells on activity of staphylokinase. Blood Coagul. Fibrinol. 7, 522–529.CrossRefGoogle Scholar
  113. Urano, T., Chibber, B.A.K., and Castellino, F.J. (1987a). The reciprocal effects of e-aminohexanoic acid and chloride ion on the activation of human [Glu1]plasminogen by human urokinase. Proc. Natl. Acad. Sci. USA. 84,4031–4034.PubMedCrossRefGoogle Scholar
  114. Urano, T., de Serrano, V.S., Chibber, B.A.K., and Castellino, F.J. (1987b). The control of the urokinase-catalyzed activation of human glutamic acid 1-plasminogen by positive and negative effectors. J. Biol. Chem. 262, 15959–15964.PubMedGoogle Scholar
  115. Urano, T., de Serrano, V.S., Gaffney, P.J., and Castellino, F.J. (1988a). Effectors of the activation of human [Glu1]plasminogen by human tissue plasminogen activator. Biochemistry 27, 6522–6528.PubMedCrossRefGoogle Scholar
  116. Urano, T., de Serrano, V.S., Gaffney, P.J., and Castellino, F.J. (1988b). The activation of human [Glu1]plasminogen by human single-chain urokinase. Arch. Biochem. Biophys. 264, 222–230.PubMedCrossRefGoogle Scholar
  117. Violand, B.N., Byrne, R., and Castellino, F.J. (1978). The effect of a-?-amino acids on human plasminogen structure and activation. J. Biol. Chem. 253, 5395–5401.PubMedGoogle Scholar
  118. Violand, B.N. and Castellino, F.J. (1976). Mechanism of urokinase-catalyzed activation of human plasminogen. J. Biol. Chem. 251, 3906–3912.PubMedGoogle Scholar
  119. Violand, B.N., Sodetz, J.M., and Castellino, F.J. (1975). The effect of ?-aminocaproic acid on the gross conformation of plasminogen and plasmin. Arch. Biochem. Biophys. 170, 300–305.PubMedCrossRefGoogle Scholar
  120. Wang, H., Prorok, M., Bretthauer, R.K., and Castellino, F.J. (1997). Serine-578 is a major phosphorylation locus in human plasma plasminogen. Biochemistry 36, 8100–8106.PubMedCrossRefGoogle Scholar
  121. White, WF., Barlow, G.H., and Mozen, M.M. (1966). The isolation and characterization of plasminogen activators (urokinase) from human urine. Biochemistry 5, 2160–2169.PubMedCrossRefGoogle Scholar
  122. Williams, J.R.B. (1951). The fibrinolytic activity of urine. Br. J. Exp. Pathol. 32, 530–537.PubMedGoogle Scholar
  123. Wilson, E.L., Becker, M.L.B., Hoal, E.G., and Dowdle, E.B. (1980). Molecular species of plasminogen activators secreted by normal and neoplastic cells. Cancer Res. 40, 933–938.PubMedGoogle Scholar
  124. Wiman, B. (1973). Primary structure of peptides released during activation of human plasminogen by urokinase. Eur. J. Biochem. 39, 1–9.PubMedCrossRefGoogle Scholar
  125. Wiman, B. (1977). The primary structure of the (light) chain of human plasmin. Eur. J. Biochem. 76, 129–137.PubMedCrossRefGoogle Scholar
  126. Wiman, B. and Wallén, P. (1975). Amino-acid sequence of the cyanogen-bromide fragment from human plasminogen that forms the linkage between the plasmin chains. Eur. J. Biochem. 58, 539–547.PubMedCrossRefGoogle Scholar
  127. Wistedt, A.C., Kotarsky, H., Marti, D., Ringdahl, U., Castellino, F.J., Schaller, J., and Sjöbring, U. (1998). Kringle 2 mediates high affinity binding of plasminogen to a defined natural sequence in streptococcal surface protein PAM. J. Biol. Chem. 273, 24420–24424.PubMedCrossRefGoogle Scholar
  128. Wohl, R.C., Summaria, L., Chediak, J., Rosenfeld, S., and Robbins, K.C. (1982). Human plasminogen variant Chicago III. Thromb. Haemost. 48, 146–152.PubMedGoogle Scholar
  129. Wohl, R.C., Summaria, L., and Robbins, K.C. (1979). Physiological activation of the human fibrinolytic system. Isolation and characterization of human plasminogen variants, Chicago I and Chicago II. J. Biol. Chem. 254, 9063–9069.PubMedGoogle Scholar
  130. Zeibdawi, A.R. and Pryzdial, E.L. (2001). Mechanism of factor Va inactivation by plasmin. Loss of A2 and A3 domains from a Ca2+-dependent complex of fragments bound to phospholipid. J. Biol. Chem. 276, 19929–19936.PubMedCrossRefGoogle Scholar
  131. Zhang, L., Seiffert, D., Fowler, B.J., Jenkins, G.R., Thinnes, T.C., Loskutoff, D.J., Parmer, R.J., and Miles, L.A. (2002). Plasminogen has a broad extrahepatic distribution. Thromb. Haemost. 87, 493–501.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Francis J. Castellino
    • 1
  • Victoria A. Ploplis
    • 1
  1. 1.Department of Chemistry and BiochemistryThe University of Notre DameNotre DameUSA

Personalised recommendations