Skip to main content

Trilobites in Paleozoic Predator-Prey Systems, and Their Role in Reorganization of Early Paleozoic Ecosystems

  • Chapter
Predator—Prey Interactions in the Fossil Record

Part of the book series: Topics in Geobiology ((TGBI,volume 20))

Abstract

Predation is a fundamental ecological process that has profound effects on the morphology, distribution, abundance, and evolution of metazoans. The earliest verified records of predation date to the Neoproterozoic-Cambrian transition interval (e.g., Conway Morris and Jenkins, 1985; Babcock, 1993a; Bengtson and Yue, 1992; Bengtson, 1994; Conway Morris and Bengtson, 1994; Nedin, 1999; Jago and Haines, in press), but the impact of predation almost certainly has a much deeper evolutionary history. Among the earliest and most widespread lines of evidence for the importance of predation in the early Paleozoic comes from the record of trilobites. As biomineralized animals, trilobites have left an excellent fossil record that extends from the latter part of the Early Cambrian (e.g., Zhang, 1987; Geyer, 1996, Geyer, 1998; Geyer and Palmer, 1995; Luo and Jiang, 1996; Hollingsworth, 1999; Geyer and Shergold, 2000; Peng and Babcock, 2000; Peng and Babcock, 2001), c. 520 Ma, to the end of the Permian (e.g., Brezinski, 1992), c. 248 Ma. Predation on and by trilobites evidently exerted influence on the morphological development of metazoans, as well as on ecosystem development, through the Paleozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlberg, P. (ed.), 1998, Guide to Excursions in Scania and Västergötland, Southern Sweden. IV Field Conference of the Cambrian Stage Subdivision Working Group, International Subcommission on Cambrian Stratigraphy, Lund Publ. Geology 141.

    Google Scholar 

  • Alexander, R. D., 1964, The evolution of mating behavior in arthropods, in: Insect Reproduction, Vol. 2 (K. C. Highnam, ed.), Royal Entomology Society, London, pp. 78–94.

    Google Scholar 

  • Allison, P. A., 1986, Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport, Geology 14:979–981.

    Google Scholar 

  • Alpert, S. P., and Moore, J. N., 1975, Lower Cambrian trace fossil evidence for predation on trilobites, Lethaia 8:223–230.

    Google Scholar 

  • Anderson, L. I., and Selden, P. A., 1997, Opisthosomal fusion and phylogeny of Palaeozoic Xiphosura, Lethaia 30:19–31.

    Google Scholar 

  • Babcock, L. E., 1982, Original and diagenetic color patterns in two phacopid trilobites from the Devonian of New York, North American Paleontological Convention III, pp. 17–22.

    Google Scholar 

  • Babcock, L. E., 1993a, Trilobite malformations and the fossil record of behavioral asymmetry, J. Paleontol. 67:217–29.

    Google Scholar 

  • Babcock, L. E., 1993b, The right and the sinister, Nat. Hist. 102(7):32–39.

    Google Scholar 

  • Babcock, L. E., 1994, Systematics and phylogenetics of polymeroid trilobites from the Henson Gletscher and Kap Stanton formations (Middle Cambrian), North GreenlandGrønlands Geol. Under. Bull. 169:79–127.

    Google Scholar 

  • Babcock, L. E., and Chang, W. T. 1997, Comparative taphonomy of two nonmineralized arthropods: Naraoia (Nektaspida; Early Cambrian, Chengjiang Biota, China) and Limulus (Xiphosurida; Holocene, Atlantic Ocean), Bull. Nat. Mus. Natur. Hist. 10:233–250.

    Google Scholar 

  • Babcock, L. E., Merriam, D. F., and West, R. R., 2000, Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian-Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus, Lethaia 33:129–141.

    Google Scholar 

  • Babcock, L. E., and Peng S. C., 2001, Malformed agnostoid trilobite from the Middle Cambrian of northwestern Hunan, China, in: Cambrian System of South China (S. C. Peng, L. E. Babcock, and M. Y. Zhu, eds.), Press of University of Science and Technology of China, Hefei,pp. 250–251.

    Google Scholar 

  • Babcock, L. E., and Robison, R. A., 1988, Taxonomy and paleobiology of some Middle Cambrian Scenella (Cnidaria) and hyolithids (Mollusca) from western North America, Univ. Kansas Pal. Contrib. Pap. 121:1–22.

    Google Scholar 

  • Babcock, L. E., and Robison, R. A., 1989, Preferences of Palaeozoic predators, Nature 337:695–696.

    Google Scholar 

  • Babcock, L. E., and Speyer, S. E., 1987, Enrolled trilobites from the Alden Pyrite Bed, Ledyard Shale (Middle Devonian) of western New York, J. Paleontol. 61:539–548.

    Google Scholar 

  • Babcock, L. E., and Zhang W. T., 2001, Stratigraphy, paleontology, and depositional setting of the Chengjiang Lägerstatte (Lower Cambrian), Yunnan, China, in: Cambrian System of South China (S. C. Peng, L. E. Babcock, and M. Y. Zhu, eds.), Press of University of Science and Technology of China, Hefei, pp. 66–86.

    Google Scholar 

  • Babcock, L. E., Zhang W. T., and Leslie, S. A., 2001, The Chengjiang Biota: record of the Early Cambrian diversification of life and clues to the exceptional preservation of fossils, GSA Today 11(2):4–9.

    Google Scholar 

  • Bartels, C., Briggs, D. E. G., and Brassel, G., 1998, The Fossils of the Hunsrück Slate: Marine Life in the Devonian, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bengtson, S., 1968, The problematic genus Mobergella from the Lower Cambrian of the Baltic area, Lethaia 1:325–351.

    Google Scholar 

  • Bengtson, S., 1994, The advent of animal skeletons, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 412–425.

    Google Scholar 

  • Bengtson, S., and Yue Z., 1992, Predatorial borings in late Precambrian mineralized exoskeletons, Science 257:367–369.

    Google Scholar 

  • Bergström, J., 1973, Organisation, life and systematics of trilobites, Fossils Strata 21:1–69.

    Google Scholar 

  • Bergström, J., and Levi-Setti, R., 1978, Phenotypic variation in the Middle Cambrian trilobite Paradoxides davidus Salter at Manuels, S. E. Newfoundland, Geol. Palaeontol. 12:1–40.

    Google Scholar 

  • Blaker, M. R., and Peel, J. S., 1997, Lower Cambrian trilobites from North Greenland, Medd. Grønland Geosci. 35:1–145.

    Google Scholar 

  • Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q., 2000, The Cambrian substrate revolution, GSA Today 10(9):l–7.

    Google Scholar 

  • Boucot, A. J., 1990, Evolutionary Paleobiology of Behavior and Coevolution, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Bowring, S. A., and Erwin, D. L., 1998, A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology, GSA Today 8(9): 1–8.

    Google Scholar 

  • Bradshaw, J. L., 1988, The evolution of human lateral asymmetries: new evidence and second thoughts, J. Human Evol. 17:615–637.

    Google Scholar 

  • Bradshaw, J. L., 1989, Hemispheric Specialization and Psychological Function, John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Bradshaw, J. L., 1991, Animal asymmetry and human heredity: dextrality, tool use and language in evolution—10 years after Walker (1980), Brit. J. Psychol. 82:39–59.

    Google Scholar 

  • Brandt, D. S., 1980, Phenotypic Variation and Paleoecology of Flexicalymene (Arthropoda: Trilobita) in the Cincinnatian Series (Upper Ordovician) near Cincinnati, Ohio. Unpublished M.S. thesis, University of Cincinnati.

    Google Scholar 

  • Brandt, D. S., Meyer, D. L., and Lask, P. B., 1995, Isotelus (Trilobita) “hunting burrow” from Upper Ordovician strata, Ohio, J. Paleontol. 69:1079–1083.

    Google Scholar 

  • Brandt Velbel, D. S., 1985, Ichnologic, taphonomic, and sedimentologic clues to the deposition of Cincinnatian shales (Upper Ordovician), Ohio, U.S.A., in: Biogenic Structures: Their Use in Interpreting Depositional Environment (A. H. Curran, ed.), Soc. Econ. Paleontol. Mineral. Spec. Publ. 35, pp. 299–307.

    Google Scholar 

  • Brasier, M. D., 1979, The Cambrian radiation event, in: The Origin of Major Invertebrate Groups (M. R. House, ed.), Systematics Association Special Volume 12. Academic Press, London and New York, pp. 103–159.

    Google Scholar 

  • Brett, C. E., 1977, Entombment of a trilobite within a closed brachiopod shell, J. Paleontol. 51:1041–1045.

    Google Scholar 

  • Brezinski, D. K., 1992, Permian trilobites from west Texas, J. Paleontol. 66:924–943.

    Google Scholar 

  • Briggs, D. E. G., 1978, The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia, Phil. Trans. R. Soc. London B 281:429–487.

    Google Scholar 

  • Briggs, D. E. G., 1979, Anomalocaris, the largest known Cambrian arthropod, Palaeontology 22:631–664.

    Google Scholar 

  • Briggs, D. E. G., 1994, Giant predators from the Cambrian of China, Science 264:1283–1284.

    Google Scholar 

  • Briggs, D. E. G., and Collins, D., 1988, A Middle Cambrian chelicerate from Mt. Stephen, British Columbia, Palaeontology 31:779–798.

    Google Scholar 

  • Briggs, D. E. G., Erwin, D. H., and Collier, F. J., 1994, The Fossils of the Burgess Shale, Smithsonian Institution Press, Washington and London.

    Google Scholar 

  • Briggs, D. E. G., and Fortey, R. A., 1989, The early radiation and relationships of the major arthropod groups, Science 246:241–243.

    Google Scholar 

  • Briggs, D. E. G., and Whittington, H. B., 1985a, Modes of life of arthropods from the Burgess Shale, British Columbia, Trans. R. Soc. Edinburgh Earth Sci. 76:149–160.

    Google Scholar 

  • Briggs, D. E. G., and Whittington, H. B., 1985b, Terror of the trilobites, Nat. Hist. 94:34–39.

    Google Scholar 

  • Bright, R. C., 1959, A paleoecologic and biometric study of the Middle Cambrian trilobite Elrathia kingii (Meek), J. Paleontol. 33:83–98.

    Google Scholar 

  • Brusca, R. C, and Brusca, G. J., 1990, Invertebrates, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Bruton, D. L., 1981, The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia, Phil. Trans R. Soc. London B 295:619–656.

    Google Scholar 

  • Bruton, D. L., and Haas, W., 1997, Functional morphology of Phacopinae (Trilobita) and the mechanics of enrollment, Paleontographica Abt. A 245:1–43.

    Google Scholar 

  • Buchholz, A., 2000, Die Trilobitenfauna der oberkambrischen Stufen 1 – 3 in Geschieben aus Vorpommern und Mecklenburg (Norddeutschland), Archiv für Geschiebekun. 2:697–776.

    Google Scholar 

  • Burling, L. D., 1917, Was the Lower Cambrian trilobite supreme?, Ottawa Natural. 31:77–79.

    Google Scholar 

  • Butterfield, N. J., 1995, Secular distribution of Burgess Shale-type preservation, Lethaia 28:1–13.

    Google Scholar 

  • Butterfield, N. J., 2002, Leanchoilia guts and the interpretation of three dimensional structures in Burgess Shale-type fossils, Paleobiology 28:155–171.

    Google Scholar 

  • Campbell, L. D., 1969, Stratigraphy and Paleontology of the Kinzers Formation, Southeastern Pennsylvania. Unpublished M.S. thesis, Franklin and Marshall College.

    Google Scholar 

  • Campbell, K. S. W., 1975, The functional anatomy of trilobites: musculature and eyes, J. Proc. R. Soc. N. S. Wales 108:168–188.

    Google Scholar 

  • Chatterton, B. D. E., Johanson, Z., and Sutherland, G., 1994, Form of the trilobite digestive system: alimentary structures in Pterocephalia,J. Paleontol. 68:294–305.

    Google Scholar 

  • Chatterton, B. D. E., and Ludvigsen, R., 1976, Silicified Middle Ordovician trilobites from the South Nahanni River area, District of Mackenzie, Canada, Palaeontographica, Abt. A 154:1–106.

    Google Scholar 

  • Chen J. Y., and Erdtmann, B.-D., 1991, Lower Cambrian Lagerstätte from Chengjiang, Yunnan, China: insights for reconstructing early metazoan life, in: The Early Evolution of Metazoa and the Significance of Problematic Taxa (A. M. Simonetta and S. Conway Morris, eds.), Cambridge University Press, Cambridge, pp. 57–76.

    Google Scholar 

  • Chen J. Y., Ramsköld, L., and Zhou G. Q., 1994, Evidence for monophyly and arthropod affinity of Cambrian giant predators, Science 264:1304–1308.

    Google Scholar 

  • Chen J. Y., and Zhou G. Q., 1997, Biology of the Chengjiang fauna, Nation. Mus. Nat. Hist. Bull. 10:11–105.

    Google Scholar 

  • Chen J. Y., Zhou G. Q., Zhu M. Y., and Yeh K Y., 1997, The Chengjiang Biota: A Unique Window of the Cambrian Explosion, National Museum of Natural Science, Taichung, Taiwan.

    Google Scholar 

  • Clarkson, E. N. K., 1979, The visual system of trilobites, Palaeontology 22:1–22.

    Google Scholar 

  • Clarkson, E. N. K., and Henry, J.-L., 1973, Structures coaptative et enroulement chez quelques trilobites ordoviciens et siluriens, Lethaia 6:105–132.

    Google Scholar 

  • Clarkson, E. N. K., and Whittington, H. B., 1997, Enrollment and coaptative structures, in: Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised. Volume 1: Introduction, Order Agnostida, Order Redlichiida (R. L. Kaesler, ed.), Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas, pp. 67–74.

    Google Scholar 

  • Cloud, P. E., 1968, Pre-metazoan evolution and the origins of the Metazoa, in: Evolution and Environment (E. T. Drake, ed.), Yale University Press, New Haven, pp. 1–72.

    Google Scholar 

  • Collins, D., 1996, The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.), J. Paleontol. 70:280–293.

    Google Scholar 

  • Conway Morris, S., 1977, Fossil priapulid worms, Spec. Pap. Palaeontol. 20.

    Google Scholar 

  • Conway Morris, S., 1981, Parasites and the fossil record, Parasitology, 82:489–509.

    Google Scholar 

  • Conway Morris, S., 1985, Cambrian Lagerstatten: their distribution and significance, Phil. Trans. R. Soc. London B 311:49–65.

    Google Scholar 

  • Conway Morris, S., 1986, The community structure of the Middle Cambrian phyllopod bed (Burgess Shale), Palaeontology 29:423–467.

    Google Scholar 

  • Conway Morris, S., 1990, Late Precambrian and Cambrian soft-bodied faunas, Ann. Rev. Earth Planet. Sci. 18:101–122.

    Google Scholar 

  • Conway Morris, S., 1998, The Crucible of Creation. The Burgess Shale and the Rise of Animals, Oxford University Press, Oxford.

    Google Scholar 

  • Conway Morris, S., and Bengtson, S., 1994, Cambrian predators: possible evidence from boreholes, J. Paleontol. 68:1–23.

    Google Scholar 

  • Conway Morris, S., and Jenkins, R. J. F,, 1985, Healed injuries in Early Cambrian trilobites from South Australia, Alcheringa 9:167–177.

    Google Scholar 

  • Conway Morris, S., and Robison, R. A., 1986, Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain, Univ. Kansas Paleontol. Contrib. Pap. 117:1–22.

    Google Scholar 

  • Conway Morris, S., and Robison, R. A., 1988, More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia, Univ. Kansas Paleontol. Contrib. Pap. 122:1–48.

    Google Scholar 

  • Crick, R. E., 1981, Diversity and evolutionary rates of Cambrian-Ordovician nautiloids, Paleobiology 7:216–229.

    Google Scholar 

  • Davis, R. A., Fraaye, R. H. B., and Holland, C. H., 2001, Trilobites within nautiloid cephalopods, Lethaia, 34:37–45.

    Google Scholar 

  • Dean, D., Rankin, J. S., Jr., and Hoffman, E., 1964, A note on the survival of polychaetes and amphipods in stored jars of sediment, J. Paleontol. 38:608–609.

    Google Scholar 

  • Droser, M. L., and Bottjer, D. J., 1988, Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States, Geology 16:233–236.

    Google Scholar 

  • Droser, M. L., and Bottjer, D. J., 1989, Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization, Geology 17:850–852.

    Google Scholar 

  • Droser, M. L., Hughes, N. C., and Jell, P., 1994, Infaunal communities and tiering in Lower Palaeozoic nearshore clastic environments: trace fossil evidence from the Cambro-Ordovician of New South Wales, Lethaia 27:273–283.

    Google Scholar 

  • Droser, M. L., Fortey, R. A., and Xing, L., 1996, The Ordovician radiation, Am. Sci. 84:122–131.

    Google Scholar 

  • Eaton, R. C., Bombardieri, R. A., and Meyer, D. L., 1977, The Mauthner-initiated startle response in teleost fish,.J. Exp. Biol. 66:65–81.

    Google Scholar 

  • Eldredge, N., 1971, Patterns of cephalic musculature in the Phacopina (Trilobita) and their phylogenetic significance, J. Paleontol. 45:52–67.

    Google Scholar 

  • Erwin, D. H., 1991, Metazoan phylogeny and the Cambrian radiation, Trends Ecol. Evol. 6:131–134.

    Google Scholar 

  • Fedonkin, M. A., 1994, Early multicellular fossils, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 370–388.

    Google Scholar 

  • Fisher, D. C., 1977, Mechanism and significance of enrollment in xiphosurans (Chelicerata, Merostomata), Geol. Soc. Amer. Abstr. Progr. 9:264–265.

    Google Scholar 

  • Foote, M., 1991, Morphologic patterns of diversification: examples from trilobites, Palaeontology 34:41–485.

    Google Scholar 

  • Foote, M., 1992, Paleozoic record of morphological diversity in blastozoan echinoderms, Proc. Nat. Acad. Sci. USA 89:7325–7329.

    Google Scholar 

  • Fortey, R. A., 1985, Pelagic trilobites as an example of deducing the life habits of extinct arthropods, Trans. R. Soc. Edinburgh Earth Sci. 76:219–230.

    Google Scholar 

  • Fortey, R. A., 2000, Trilobite! Eyewitness to Evolution, Alfred A. Knopf, New York.

    Google Scholar 

  • Fortey, R. A., Briggs, D. E. G., and Wills, M. A., 1996, The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity, Biol. J. Linn. Soc. 57:13–33.

    Google Scholar 

  • Fortey, R. A., and Clarkson, E. N. K., 1976, The function of the glabellar ‘tubercle’ in Nileus and other trilobites, Lethaia 9:101–106.

    Google Scholar 

  • Fortey, R. A., and Owens, R. M., 1990, Trilobites, in: Evolutionary Trends (K. J. McNamara, ed.), Belhaven Press, London, pp. 121–142.

    Google Scholar 

  • Fortey, R. A., and Owens, R. M., 1999, Feeding habits in trilobites, Palaeontology 42:429–465.

    Google Scholar 

  • Fortey, R. A., and Whittington, H. B., 1989, The Trilobita as a natural group, Hist. Biol. 2:125–138.

    Google Scholar 

  • Gehling, J. G., 1999, Microbial mats in Proterozoic siliciclastics: Ediacaran death masks, Palaios 14:40–57.

    Google Scholar 

  • Gehling, J. G., and Rigby, J. K., 1996, Long expected sponges from the Neoproterozoic Ediacaran fauna of South Australia, J. Paleontol. 70:185–195.

    Google Scholar 

  • Geyer, G., 1993, The giant Cambrian trilobites of Morocco, Beringia 8:71–107.

    Google Scholar 

  • Geyer, G., 1996, The Moroccan fallotaspidid trilobites revisited, Beringia 18:89–199.

    Google Scholar 

  • Geyer, G., 1998, Intercontinental, trilobite-based correlation of the Moroccan early Middle Cambrian, Can. J. Earth Sci. 35:374–401.

    Google Scholar 

  • Geyer, G., and Palmer, A. R., 1995, Neltneriidae and Holmiidae (Trilobita) from Morocco and the problem of Early Cambrian intercontinental correlation, J. Paleontol. 69:459–474.

    Google Scholar 

  • Geyer, G., and Shergold, J. S., 2000, The quest for internationally recognized divisions of Cambrian time, Episodes 23: 188–195.

    Google Scholar 

  • Glaessner, M. F., 1984, The Dawn of Animal Life. A Biohistorical Study, Cambridge University Press, Cambridge.

    Google Scholar 

  • Grant, S. W. F., 1990, Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic, Amer. J. Sci. 290-A:261–294.

    Google Scholar 

  • Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J., 1995, Biostratigraphic and geochronologic constraints on early animal evolution, Science 270:598–604.

    Google Scholar 

  • Gunther, L. F., and Gunther, V. G., 1981, Some Middle Cambrian fossils of Utah, Brig. Young Univ. Geol. Stud. 28:1–87

    Google Scholar 

  • Han N. R., and Zhang J. L., 1991, Malformed thoracic pleurae of Redlichia (Redlichia) hupehensis Hsu, Acta Palaeontol. Sinica 30:126–128.

    Google Scholar 

  • Hannibal, J. T., and Feldmann, R. M., 1981, Systematics and functional morphology of oniscomorph millipedes (Arthropoda: Diplopoda) from the Carboniferous of North America, J. Paleontol. 55:730–746.

    Google Scholar 

  • Henry, J. L., and Clarkson, E. N. K., 1974, Enrollment and coaptation in some species of the Ordovician trilobite genus Placoparia, Fossils Strata 4:87–95.

    Google Scholar 

  • Hoffman, H. J., 1994, Proterozoic carbonaceous compressions (“metaphytes” and “worms”), in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 342–357.

    Google Scholar 

  • Hollingsworth, J. S., 1999, The problematical base of the Montezuman Stage: should the Laurentian fallotaspidids be in a non-trilobite series?, in: Laurentia 99. V Field Conference of the Cambrian Stage Subdivision Working Group, International Subcommission on Cambrian Stratigraphy (A. R. Palmer, ed.), Institute for Cambrian Studies, Boulder, Colorado, pp. 5–9.

    Google Scholar 

  • Hou X. G., and Bergström, J., 1997, Arthropods of the Lower Cambrian Chengjiang fauna, Southwest China, Fossils Strata 45:1–116.

    Google Scholar 

  • Hou X. G., Bergström, J., and Ahlberg, P., 1995, Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of Southwest China, Geol. Fören. Stockholm Förhand. 117:162–183.

    Google Scholar 

  • Hou X. G., Bergström, J., Wang H. F., Feng X. H., and Chen A. L., 1999, The Chengjiang Fauna: Exceptionally Weil-Preserved Animals from 530 Million Years Ago, Science and Technology Press, Yunnan.

    Google Scholar 

  • Hughes, N. C., Chapman, R. E., and Adrain, J. M., 1999, The stability of thoracic segmentation in trilobites: a case study in developmental and ecological constraints, Evol. Develop. 1:24–35.

    Google Scholar 

  • Hughes, N. C, and Cooper, D. L., 1999, Paleobiology and taphonomic aspects of the “granulosa” trilobite cluster, Kope Formation (Upper Ordovician, Cincinnati region), J. Paleontol. 73:306–319.

    Google Scholar 

  • Jago, J. B., 1974, Evidence for scavengers from Middle Cambrian sediments in Tasmania, Neues Jahrb. Geol. Pälaontoi, Monatsch. 1974:13–17.

    Google Scholar 

  • Jago, J. B., and Haines, P. W., in press, Repairs to an injured early Middle Cambrian trilobite, Elkedra area, Northern Territory, Alcheringa.

    Google Scholar 

  • Jell, P. A., 1989, Some aberrant exoskeletons from fossil and living arthropods, Queensland Mus. Mem. 27:491–498.

    Google Scholar 

  • Jensen, S., 1990, Predation by Early Cambrian trilobites on infaunal worms—evidence from the Swedish Mickwitzia Sandstone, Lethaia 23:29–42.

    Google Scholar 

  • Kelley, P. H., and Hansen, T. A., 1993, Evolution of the naticid gastropod predator-prey system: an evaluation of the hypothesis of escalation, Palaios 8:358–375.

    Google Scholar 

  • Kelley, P. H., Kowalewski, M., and Hansen, T. A. (eds.), this volume, Predator-Prey Interactions in the Fossil Record. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Kesling, R. V., and Chilman, R. B., 1975, Strata and Megafossils of the Middle Devonian Silica Formation, Univ. Michigan Mus. Paleontol. Pap. Paleontol. 8:1–408.

    Google Scholar 

  • Knoll, A. H., 1992, The early evolution of eukaryotes: a geological perspective, Science 256:622–627.

    Google Scholar 

  • Knoll, A. H., 1996, Daughter of time, Paleobiology 22:1–7.

    Google Scholar 

  • Landing, E., Bowring, S. A., Davidek, K. L., Westrop, S. R., Geyer, G., and Heldmaier, W., 1998, Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana, Can. J. Earth Sci. 35:329–338.

    Google Scholar 

  • Laudon, L. R., 1939, Unusual occurrence of Isotelus gigas DeKay in the Bromide Formation (Ordovician) of southern Oklahoma, J. Paleontol. 13:211–213.

    Google Scholar 

  • Levi-Setti, R., 1993, Trilobites, second edition, University of Chicago Press, Chicago and London.

    Google Scholar 

  • Lipps, J. H., 1983, Biotic interactions in benthic Foraminifera ecosystems, in: BioticInteractions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. L. McCall, eds.), Plenum Press, New York and London, pp. 331–376.

    Google Scholar 

  • Lipps, J. H., 2001, Protists and the Precambri an -Cambrian skeletonization event, in: Cambrian System of South China (S. C. Peng, L. E. Babcock and M. Y. Zhu, eds.), Press of University of Science and Technology of China, Hefei,p. 280.

    Google Scholar 

  • Lipps, J. H., and Signor, P. W. (eds.), 1992, Origin and Early Evolution of the Metazoa, Plenum Press, New York.

    Google Scholar 

  • Loeblich, A. R., Jr., 1940, An occurrence of Isotelus gigas DeKay in the Arbuckle Mountains, Oklahoma, J. Paleontol. 14:161–162.

    Google Scholar 

  • Luo H. L., and Jiang Z. W., 1996, The Sinian-Cambrian boundary section and the Meishucun and Chengjiang faunas in Yunnan, 30th Int. Geol. Congr. Field Trip Tl 18/381, Geological Publishing House, Beijing, pp. 1–23.

    Google Scholar 

  • Ludvigsen, R., 1977, Rapid repair of traumatic injury by an Ordovician trilobite, Lethaia 10:205–207.

    Google Scholar 

  • Ludvigsen, R., 1979, Fossils of Ontario. Part J: The Trilobites, R. Ontario Mus. Life Sci. Misc. Publ., 96 pp.

    Google Scholar 

  • Maliva, R. G., Knoll, A. H., and Siever, R., 1989, Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle, Palaios 5:519–532.

    Google Scholar 

  • Manton, S. M., 1977, The Arthropoda, Clarendon Press, Oxford.

    Google Scholar 

  • Martinsson, A., 1965, Aspects of a Middle Cambrian thanatotope on Öland, Geol. Fören. Stockholm Forhand. 87:181–230.

    Google Scholar 

  • McMahon, B. R., and Wilkens, J. L., 1975, Respiratory and circulatory responses to hypoxia in the lobster Homarus americanus, J. Exp. Biol. 62:637–655.

    Google Scholar 

  • McMenamin, M. A. S., 1986, The garden of Ediacara, Palaios 1:178–182.

    Google Scholar 

  • McMenamin, M. A. S., and McMenamin, D. L. S., 1990, The Emergence of Animals: The Cambrian Breakthrough, Columbia University Press, New York.

    Google Scholar 

  • Mikulic, D. G., 1994, Sheltered molting by trilobites, Geol. Soc. Amer. Abstr. Prog. 26(5):55.

    Google Scholar 

  • Miller, J., 1975, Structure and function of trilobite terrace lines, Fossils Strata 4:155–178.

    Google Scholar 

  • Miller, J., 1976, The sensory fields and life mode of Phacops rana (Green, 1832) (Trilobita), Trans. R. Soc. Edinburgh 69:337–367.

    Google Scholar 

  • Miller, J., and Clarkson, E. N. K., 1980, The post-ecdysial development of the cuticle and the eye of the Devonian trilobite Phacops rana milleri Stewart 1927, Phil. Trans. R. Soc. London B 288:461–480.

    Google Scholar 

  • Miller, R. H., and Sundberg, F. A., 1984, Boring Late Cambrian organisms, Lethaia 17:185–190.

    Google Scholar 

  • Müller, K. J., and Walossek, D., 1987, Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden, Fossils Strata 19:1–124.

    Google Scholar 

  • Narbonne, G. M., 1998, The Ediacara Biota: a terminal Neoproterozoic experiment in the evolution of life, GSA Today 8(2): 1–6.

    Google Scholar 

  • Needham, A. E., 1952, Regeneration and Wound-Healing, Methuen, London.

    Google Scholar 

  • Nedin, C, 1999, Anomalocaris predation on nonmineralized and mineralized trilobites, Geology 27:987–990.

    Google Scholar 

  • Oehlert, D.-P., 1895, Sur les Trinucleus de 1’Ouest de la France, Bull. Soc. Géol. France ser. 3, 23:299–336.

    Google Scholar 

  • Osgood, R. G., Jr., 1970, Trace fossils of the Cincinnati area, Palaeontogr. Amer. 6:281–444.

    Google Scholar 

  • Osgood, R. G., Jr., and Drennen, W. T., 1975, Trilobite trace fossils from the Clinton Group (Silurian) of east-central New York, Bull. Am. Paleontol. 67:300–348.

    Google Scholar 

  • Owen, A. W., 1983, Abnormal cephalic fringes in the Trinucleidae and Harpetidae (Trilobita), Spec. Pap. Palaeontol. 30:241–247.

    Google Scholar 

  • Owen, A. W., 1985, Trilobite abnormalities, Trans. R. Soc. Edinburgh Earth Sci. 76:255–272.

    Google Scholar 

  • Palmer, A. R., 1999, Terminal Early Cambrian extinction of the Olenellina: documentation from the Pioche Formation, Nevada, J. Paleontol. 72:650–672.

    Google Scholar 

  • Peach, B. N., 1894, Additions to the fauna of the Olenellus-zone of the Northwest Highlands, Quart. J. Geol. Soc. London 50:661–676.

    Google Scholar 

  • Peng S. C., and Babcock, L. E., 2001, Cambrian of the Hunan-Guizhou region, South China, in: Cambrian System of South China (S. C. Peng, L. E. Babcock and M. Y. Zhu, eds.), Press of University of Science and Technology of China, Hefei, pp. 3–51.

    Google Scholar 

  • Peng S. C, and Robison, R. A., 2000, Agnostoid biostratigraphy across the Middle-Upper Cambrian boundary in Hunan, China, Paleontol. Soc. Mem. 53 (supplement to J. Paleontol. 74 (4)), 104 pp.

    Google Scholar 

  • Pompeckj, J., 1892, Bemerkungen über das Einrollungsvermögen der Trilobiten, Gesellsch. Natur. Württemberg Stuttgart Jahr. 48:93–101.

    Google Scholar 

  • Portlock, J. E., 1843, Report on the Geology of the County of Londonderry, and of Parts of Tyrone and Fermanagh. Examined and Described Under the Authority of the Master General and Board of Ordnance, Andrew Milliken, Dublin, and Longman, Brown, Green, and Longmans, London.

    Google Scholar 

  • Pratt, B. R., 1998, Probable predation on Upper Cambrian triiobites and its relevance for the extinction of soft-bodied Burgess Shale-type animals, Lethaia 31:73–88.

    Google Scholar 

  • Přibyl, A., and Vaněk J., 1981, Preliminary report on some new triiobites of the family Harpetidae Hawle and Corda (Trilobita), Cas. Pro. Min. Geol. 26:187–193.

    Google Scholar 

  • Purtilo, D. T., 1978, A Survey of Human Diseases, Addison-Wesley, Menlo Park, California.

    Google Scholar 

  • Ramsköld, L., and Edgecombe, G. D., 1991, Trilobite monophyly revisited, Hist. Biol. 4:267–283.

    Google Scholar 

  • Ramsköld, L., and Edgecombe, G. D., 1996, Trilobite appendage structure of Redlichia reconsidered, Alcheringa 20:269–276.

    Google Scholar 

  • Resser, C. E., and Howell, B. F., 1938, Lower Cambrian Olenellus Zone of the Appalachians, Geol. Soc. Am. Bull. 49:195–248.

    Google Scholar 

  • Robison, R. A., 1964, Late Middle Cambrian faunas from western Utah, J. Paleontol. 38:510–566.

    Google Scholar 

  • Robison, R. A., 1972, Mode of life of agnostid triiobites, Proc. 24th Internat. Geol. Congr. 7:33–40.

    Google Scholar 

  • Robison, R. A., 1984, Cambrian Agnostida of North America and Greenland, Part 1, Ptychagnostidae, Univ. Kansas Paleontol. Contrib. Pap. 109:1–59.

    Google Scholar 

  • Robison, R. A., 1991, Middle Cambrian biotic diversity: examples from four Utah Lagerstätten, in: The Early Evolution ofMetazoa and the Significance of Problematic Taxa (A. M. Simonetta and S. Conway Morris, eds.), Cambridge University Press, Cambridge, pp. 77–98.

    Google Scholar 

  • Robison, R. A., 1994, Agnostoid triiobites from the Henson Gletscher and Kap Stanton formations (Middle Cambrian), North Greenland, Grønlands Geol. Under. Bull. 169:25–77.

    Google Scholar 

  • Ross, R. J., Jr., 1979, Additional triiobites from the Ordovician of Kentucky, U.S. Geol. Surv. Prof. Pap. 1066D:l–13.

    Google Scholar 

  • Rudkin, D. M., 1979, Healed injuries in Ogygopsis klotzi (Trilobita) from the Middle Cambrian of British Columbia, R. Ontario Mus. Misc. Coll. Pap. 32:1–8.

    Google Scholar 

  • Rudkin, D. M., 1985, Exoskeleton abnormalities in four triiobites, Can. J. Earth Sci. 22:479–483.

    Google Scholar 

  • Rudkin, D. M., and Tripp, R. P., 1989, The type species of the Ordovician trilobite genus Isotelus: I. gigas Dekay, 1824, R. Ontario Mus. Life Sci. Contrib. 152:1–19.

    Google Scholar 

  • Ruedemann, R., and Howell, B. F., 1944, Impression of a worm on the test of a Cambrian trilobite, J. Paleontol. 18:96.

    Google Scholar 

  • Runnegar, B., 1982, The Cambrian explosion: animals or fossils?, J. Geol. Soc. Australia 29:395–411.

    Google Scholar 

  • Runnegar, B., 1989, The evolution of mineral skeletons, in: Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals (R. E. Crick, ed.), Plenum Press, New York, pp. 75–94.

    Google Scholar 

  • Runnegar, B., 1994, Proterozoic eukaryotes: evidence from biology and geology, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 287–297.

    Google Scholar 

  • Schmalfuss, H., 1978, Structure, patterns, and function of cuticular terraces in Recent and fossil arthropods, Zoomorphologie 90:19–40.

    Google Scholar 

  • Schram, F. R., 1986, Crustacea, Oxford University Press, Oxford.

    Google Scholar 

  • Seilacher, A., 1985, Trilobite paleobiology and substrate relationships, Trans. R. Soc. Edinburgh Earth Sci. 76:231–237.

    Google Scholar 

  • Seilacher, A., 1989, Vendozoa: organismic construction in the Proterozoic biosphere, Lethaia 22:229–239.

    Google Scholar 

  • Seilacher, A., and Pfluger, F., 1994, From biomates to benthic agriculture: a biohistoric revolution, in: Bio stabilization of Sediments (W. S. Krumbein et al., eds.), Bibliotheks und Informationsystem der Universität Oldenberg, Oldenberg, Germany, pp. 97–105.

    Google Scholar 

  • Sepkoski, J. J., 1981, A factor analytic description of the Phanerozoic marine fossil record, Paleobiology 7:36–53.

    Google Scholar 

  • Sepkoski, J. J., and Sheehan, P. M., 1983, Diversification, faunal change, and community replacement during the Ordovician radiations, in: Biotic Interactions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. L. McCall, eds.), Plenum, New York, pp. 673–717.

    Google Scholar 

  • Shaw, F. C, 1974, Simpson Group (Middle Ordovician) trilobites of Oklahoma. Paleontol. Soc. Mem. 6 (supplement to J. Paleontol. 48(5)), 54 pp.

    Google Scholar 

  • Shu D. G., Geyer, G., Chen, L., and Zhang, X. L., 1995, Redlichiacean trilobites with soft-parts from the Lower Cambrian Chengjiang fauna (South China), Beringia Spec. Issue 2:203–241.

    Google Scholar 

  • Shu D. G., Luo H. L., Conway Morris, S., Zhang X. L., Hu S. X., Chen L., Han J., Zhu M., Li Y., and Chen L. Z., 1999, Lower Cambrian vertebrates from South China, Nature 402: 42–46.

    Google Scholar 

  • Shu D. G., and Zhang X. L., 1996, Kuamaia, an Early Cambrian predator from the Chengjiang Fossil Lagerstätte, J. Northwest Univ. 1996:27–33.

    Google Scholar 

  • Signor, P. W., III, and Brett, C. E., 1984, The mid-Paleozoic precursor to the Mesozoic marine revolution, Paleobiology 10:229–245.

    Google Scholar 

  • Signor, P. W., and Vermeij, G. J., 1994, The plankton and the benthos: origins and early history of an evolving relationship, Paleobiology 20:297–319.

    Google Scholar 

  • Sliter, W. V., 1971, Predation on benthic foraminifers, J. Foram. Res. 1:20–29.

    Google Scholar 

  • Sloan, R. E., 1992, Functional anatomy of Ectenaspis and the isoteline hypostome, Geol. Soc. Am. Abstr. Progr. 24(4):65.

    Google Scholar 

  • Šnajdr, M., 1978a, Anomalous carapaces of Bohemian paradoxid trilobites, Sb. Geol. Ved. Paleont. 20:1–31.

    Google Scholar 

  • Šnajdr, M., 1978b, Pathological neoplasms in the fringe of Bohemoharpes (Trilobita), Věstn. Ústřed. ústavu geolog. 53:49–50.

    Google Scholar 

  • Šnajdr, M., 1979a, Two trinucleid trilobites with repair of traumatic injury, Věstn. Uětřed. ústavu geolog. 54:49–51.

    Google Scholar 

  • Šnajdr, M., 1979b, Note on the regenerative ability of injured trilobites, Věstn. Uětřed. ústavu geolog. 54:171–173.

    Google Scholar 

  • Šnajdr, M., 1979c, Patologické exoskeletony vou Ordovických trilobitů Barrandienu, Cas. Národ. Muz. 148:173–176.

    Google Scholar 

  • Šnajdr, M., 1981, Bohemian Proetidae with malformed exoskeletons, Sb. Geol. Ved. Paleont. 24:37–61.

    Google Scholar 

  • Snajdr, M., 1991, On the digestive system of Deanaspis goldfussi (Barrande), Cas. Národ. Muz. 156:8–16.

    Google Scholar 

  • Speyer, S. E., 1988, Biostratinomy and functional morphology of enrollment in two Middle Devonian trilobites, Lethaia 21:121–138.

    Google Scholar 

  • Speyer, S. E., 1990a, Enrollment in trilobites, in: Evolutionary Paleobiology of Behavior and Coevolution (by A. J. Boucot), Elsevier Science Publishers, Amsterdam, pp. 450–455.

    Google Scholar 

  • Speyer, S. E., 1990b, Gregarious behavior and reproduction in trilobites, in: Evolutionary Paleobiology of Behavior and Coevolution (by A. J. Boucot), Elsevier Science Publishers, Amsterdam, pp. 405–409.

    Google Scholar 

  • Speyer, S. E., and Brett, C. E., 1985, Clustered trilobite assemblages in the Middle Devonian Hamilton Group, Lethaia 18:85–103.

    Google Scholar 

  • Speyer, S. E., and Chatterton, B. D. E., 1989, Trilobite larvae and larval ecology, Hist. Biol. 3:27–60.

    Google Scholar 

  • Sprinkle, J., 1973, Morphology and evolution of blastozoan echinoderms, Mus. Comp. Zool., Harvard Univ., Spec.Publ.,pp. 1–283.

    Google Scholar 

  • Stanley, S. M., 1976, Fossil data and the Precambrian-Cambrian evolutionary transition, Amer. J. Sci. 276:56–76.

    Google Scholar 

  • Stanley, S. M., 1999, Earth System History, W. H. Freeman and Company, New York.

    Google Scholar 

  • Stitt, J. H., 1983, Enrolled Late Cambrian trilobites from the Davis Formation, southeast Missouri, J. Paleontol. 57:93–105.

    Google Scholar 

  • Stockton, W. L., and Cowen, R., 1976, Stereoscopic vision in one eye: paleophysiology of the schizochroal eye of trilobites, Paleobiology 2:304–315.

    Google Scholar 

  • Størmer, L., 1931, Boring organisms in trilobite shells, Norsk Geol. Tidsskr. 12:533–539.

    Google Scholar 

  • Struve, W., and Flick, H., 1984, Chotecops sollei und Chotecopsferdinandi aus den devonischen Schiefern desrheinischen Gebirges, Senck. leth. 65:137–163.

    Google Scholar 

  • Stürmer, W., and Bergström, J., 1973, New discoveries on trilobites by x-ray, Pälaontol. Zeit. 47:104–141.

    Google Scholar 

  • Sun W. G., 1994, Early multicellular fossils, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 358–369.

    Google Scholar 

  • Thorson, G., 1950, Reproductive and larval ecology of marine bottom invertebrates, Biol. Rev. 25:1–45.

    Google Scholar 

  • Towe, K. M., 1973, Trilobite eyes: calcified lenses in vivo, Science 179:1007–1009.

    Google Scholar 

  • Tripp, R. P., and Evitt, W. R., 1986, Silicified trilobites of the family Asaphidae from the Middle Ordovician of Virginia, Palaeontology 29:705–724.

    Google Scholar 

  • Tshudy, D. M., Feldmann, R. M., and Ward, P. D., 1989, Cephalopods: biasing agents in the preservation of lobsters, J. Paleontol. 63:621–626.

    Google Scholar 

  • Valentine, J. W., 1994, The Cambrian explosion, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 401–411.

    Google Scholar 

  • Vermeij, G. J., 1977, The Mesozoic faunal revolution: evidence from snails, predators and grazers, Paleobiology 3:245–258.

    Google Scholar 

  • Vermeij, G. J., 1987, Evolution and Escalation: An Ecological History of Life, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Vermeij, G. J., 1995, Economics, volcanoes, and Phanerozoic revolutions, Paleobiology 21:125–152.

    Google Scholar 

  • Vidal, G., 1994, Early ecosystems: limitations imposed by the fossil record, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 298–311.

    Google Scholar 

  • Vorwald, G. R., 1982, Healed injuries in trilobites -- evidence for a large Cambrian predator, Geol. Soc. Am. Abstr. Progr. 14:639.

    Google Scholar 

  • Walcott, C. D., 1883, Injury sustained by the eye of a trilobite at the time of the moulting of the shell, Amer. J. Sci. ser. 3, 26:302 [reprinted, 1884, Annals Mag. Nat. Hist. 15:69].

    Google Scholar 

  • Webb, P. W., 1975, Acceleration performance of rainbow trout Salmo gairneri and green sunfish Lepomis cyanellus,J. Exp. Biol. 63:451–465.

    Google Scholar 

  • Wenndorf, K.-W., 1990, Homalonotinae (Trilobita) aus dem Rheinischen Unter-Devon, Palaeontographica Abt.A 211:1–184.

    Google Scholar 

  • Westergård, A. H., 1946, Agnostidea of the Middle Cambrian of Sweden, Sver. Geol. Unders. C 477:1–141.

    Google Scholar 

  • Whittington, H. B., 1975, Trilobites with appendages from the Middle Cambrian Burgess Shale, British Columbia, Fossils Strata 4:97–136.

    Google Scholar 

  • Whittington, H. B., 1977, The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia, Phil. Trans. R. Soc. London B 280:409–443.

    Google Scholar 

  • Whittington, H. B., 1980, Exoskeleton, moult stage, appendage morphology and habits of the Middle Cambrian trilobite Olenoides serratus, Palaeontology 23:171–204.

    Google Scholar 

  • Whittington, H. B., 1988a, Hypostomes and ventral cephalic sutures in Cambrian trilobites, Palaeontology 31:577–610.

    Google Scholar 

  • Whittington, H. B., 1988b, Hypostomes of post-Cambrian trilobites, Mem. New Mexico Bur. Mines Min. Resour. 44:321–39.

    Google Scholar 

  • Whittington, H. B., 1992, Trilobites. Fossils Illustrated, Vol. 2, Boudell Press, Woodbridge and Suffolk, U.K.

    Google Scholar 

  • Whittington, H. B. 1997a, Morphology of the exoskeleton, in: Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised. Volume 1: Introduction, Order Agnostida, Order Redlichiida (R. L. Kaesler, ed.), Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas, pp. 1–67.

    Google Scholar 

  • Whittington, H. B., 1997b, Supposed color markings in: Treatise on Invertebrate Paleontology, Part O, Arthropoda J, Trilobita, Revised. Volume 1: Introduction, Order Agnostida, Order Redlichiida (R. L. Kaesler, ed.), Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas, pp. 84–85.

    Google Scholar 

  • Whittington, H. B., 1997c, Mode of life, habits, and occurrence, in: Treatise on Invertebrate Paleontology, Part O, Arthropoda J, Trilobita, Revised. Volume 1: Introduction, Order Agnostida, Order Redlichiida (R. L. Kaesler, ed.), Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas, pp. 137–169.

    Google Scholar 

  • Whittington, H. B., and Briggs, D. E. G., 1985, The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia, Phil. Trans. R. Soc. London B 306:569–609.

    Google Scholar 

  • Wills, M. A., Briggs, D. E. G., Fortey, R. A., and Wilkinson, M., 1995, The significance of fossils in understanding arthropod evolution, Verhand. Deutsch. Zoolog. Gesellsch. 88:203–215.

    Google Scholar 

  • Zhang W. T., 1987, World’s oldest Cambrian trilobites from eastern Yunnan, in: Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary 1, Nanjing University Publishing House, Nanjing, pp. 1–18.

    Google Scholar 

  • Zhang W. T., and Hou X. G., 1985, Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia, Acta Palaeontol. Sinica 24:591–595.

    Google Scholar 

  • Zhang X. G., 1989, Ontogeny of an Early Cambrian eodiscid trilobite from Henan, China, Lethaia 22:13–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Babcock, L.E. (2003). Trilobites in Paleozoic Predator-Prey Systems, and Their Role in Reorganization of Early Paleozoic Ecosystems. In: Kelley, P.H., Kowalewski, M., Hansen, T.A. (eds) Predator—Prey Interactions in the Fossil Record. Topics in Geobiology, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0161-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0161-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4947-1

  • Online ISBN: 978-1-4615-0161-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics