Bones of Comprehension

The Analysis of Small Mammal Predator—Prey Interactions
  • J. P. Williams
Part of the Topics in Geobiology book series (TGBI, volume 20)


Prey species abundances in fossil mammal assemblages rarely mirror those in the original community from which they were drawn. This disharmony may result from a number of factors, one of which is the initial prey selection. As a result, the species present in a fossil assemblage may be more representative of the size and habits of the predator than of the ecology of the surrounding area. This is a particularly acute problem in the analysis of small mammal fossil deposits, especially when the overall goal of the analysis is to gain further insight into the environment at the time of deposition. It is therefore necessary to identify the mode of accumulation, and, where appropriate, the predator(s) responsible. By comparison with the present-day behavior of these predator species, it is possible to recognize and account for any bias in the species representation.


Small Mammal Mammalian Carnivore Tooth Mark Diurnal Raptor Taphonomic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, J. P., and Burger, B. J., 2001, Stratigraphy and taphonomy of Grizzly Buttes, Bridger Formation, and the middle Eocene of Wyoming, in: Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats (G. F. Gunnell, ed.), Kluwer Academic/Plenum Publishers, New York, pp. 165–196.Google Scholar
  2. Andrews, P., 1983, Small mammal diversity at Olduvai Gorge, in: Animals and Archaeology Vol. 1 Hunters and their Prey (J. C. Brook and C. Grigson, eds.), British Archaeological Reports, International Series, Oxford, pp. 77–85.Google Scholar
  3. Andrews, P., 1990, Owls, Caves and Fossils, Chicago University Press, Chicago.Google Scholar
  4. Andrews, P., and Evans, E. M. N., 1983, Small mammal bone accumulations produced by mammalian carnivores, Paleobiology 9:289–307.Google Scholar
  5. Behrensmeyer, A. K., 1975, The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya, Bull. Mus. Compar. Zool. 146:473–578.Google Scholar
  6. Berger, L. R., and Clarke, R. J., 1995, Eagle involvement in accumulation of the Taung child fauna, J. Human Evol. 29(3):275–299.CrossRefGoogle Scholar
  7. Brain, C. K., 1981, The Hunters or the Hunted, Chicago University Press, Chicago.Google Scholar
  8. Brown, J. S., Kotler, B. P., Smith, R. J., and Wirtz, W. O., 1988, The effects of owl predation on the foraging behavior of heteromyid rodents, Oecologia 76:408–415.Google Scholar
  9. Buckland, W., 1823, Reliquiae diluvianae; or observations of the organic remains contained in caves, fissures and diluvial gravel, and on other geological phenomenon, attesting to the action of an universal deluge, John Murray, London.Google Scholar
  10. Chitty, D., 1996, Do Lemmings Commit Suicide? Beautiful Hypotheses and Ugly Facts, Oxford University Press, Oxford.Google Scholar
  11. Coetzee, C. G., 1972, The identification of southern African small mammal remains in owl pellets, Cimbebasia A(2):53–64.Google Scholar
  12. Crandell, B. D., and Stahl, P. W., 1995, Human digestive effects on a micromammalian skeleton, J. Archaeol. Sci. 22:789–797.CrossRefGoogle Scholar
  13. Dauphin, Y., Denys, C., and Kowalski, K., 1997, Analysis of accumulations of rodent remains: Role of chemical composition of skeletal elements, Neues Jahrb. Geol. Paläontol. Abh. 203(3):295–315.Google Scholar
  14. Dauphin, Y., Kowalski, C,. and Denys, C., 1994, Assemblage data and bone and teeth modifications as an aid to palaeoenvironmental interpretations of the open-air Pleistocene site of Tighenif (Algeria)., Quat. Res. 42:340–349.CrossRefGoogle Scholar
  15. Denys, C., Fernandez-Jalvo, F. and Dauphin, Y., 1995, Experimental taphonomy: preliminary results of the digestion of micromammalian bones in the laboratory, C. R. hebdomadaires Acad. Sci. Paris 321(2a):803–809.Google Scholar
  16. Denys, C., Kowalski, K. and Dauphin, Y., 1992, Mechanical and chemical alterations of skeletal tissues in a recent Saharan accumulation of feaces from Vulpes rueppelli (Carnivora, Mammalia), Acta Zool. Cracoviensia 32(2):265–283.Google Scholar
  17. Dodson, P., and Wexlar, D., 1979, Taphonomic investigation of owl pellets, Paleobiology 5:275–284.Google Scholar
  18. Duke, G. E., Jegers, A. A., Loff, G., and Evanson, O. A., 1975, Gastric juice of some raptors, Comp. Biochem. Physiol. A — Physiol. 50:649–656.CrossRefGoogle Scholar
  19. Dyczkowski, J., and Yalden, D. W., 1998, An estimate of the impact of predators on the British Field Voles Microtus agrestis population, Mamm. Rev. 28(4):165–184.CrossRefGoogle Scholar
  20. Elton, C., 1966, Animal Ecology, Methuen & Co, London.Google Scholar
  21. Fernandez-Jalvo, Y., 1995, Small mammal taphonomy at La Trinchera de Atapuerca (Burgos, Spain). A remarkable example of taphonomic criteria used for stratigraphic correlations and palaeoenvironmental interpretations, Palaeogeogr. Palaeoclim. Palaeoecol. 114:167–195.CrossRefGoogle Scholar
  22. Fernandez-Jalvo, Y., 1996, Small mammal taphonomy and the Middle Pleistocene environments of Dolina, Northern Spain, Quat. Int. 33:21–34.CrossRefGoogle Scholar
  23. Fernandez-Jalvo, Y., and Andrews, P., 1992, Small mammal taphonomy of Gran Dolina, Atapuerca (Burgos), Spain, J. Archaeol. Sci. 19:407–428.CrossRefGoogle Scholar
  24. Fernandez-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y. and Humphrey, L., 1998, Taphonomyand Palaeoecology of Olduvai Bed-1 (Pleistocene, Tanzania), J. Human Evol. 34:137–172.CrossRefGoogle Scholar
  25. Fisher, D. C., 1981, Crocodilian scatology, micro vertebrate concentrations, and enamel-less teeth, Paleobiology 7:262–275.Google Scholar
  26. Geering, K., 1990, A taphonomic analysis of recent masked owl (Tyto novaehollandiae castanops) pellets from Tasmania, in: Problem Solving in Taphonomy, Archaeological and Palaeontological Studies for Europe, Africa and Oceania (S. Solomon, I. Davidson, and D. Watson, eds.), Tempus, Queensland, pp. 135–143.Google Scholar
  27. Glue, D. E., 1974, Food of the Barn owl in Britain and Ireland, Bird Study 21:200–210.CrossRefGoogle Scholar
  28. Grimm, R. J., and Whitehouse, W. M., 1963, Pellet formation in a Great-horned owl. A roentgenigraphic study, The Auk 80:301–306.CrossRefGoogle Scholar
  29. Grossman, M. L., and Hamlet, J., 1964, Birds of Prey of the World, Clarkson N. Potter, New York.Google Scholar
  30. Hadly, E. A., 1999, Fidelity of terrestrial vertebrate fossils to a modern ecosystem, Palaeogeogr. Palaeoclim. Palaeoecol. 149:398–409.CrossRefGoogle Scholar
  31. Hanney, P., 1963, Observations upon the food of the Barn owl (Tyto alba) in Southern Nyasaland, with amethod of ascertaining population dynamics of rodent prey, Ann. Mag. Nat. Hist. 65:305–313.Google Scholar
  32. Harris, S., Morris, P., Wray, S., and Yalden, D., 1995, A Review of British Mammals: Population Estimates and Conservation Status of British Mammals Other Than Cetaceans, JNCC, Peterborough.Google Scholar
  33. Haynes, G., 1980, Evidence of carnivore gnawing on Pleistocene and Recent mammalian bones, Paleobiology 6:341–351.Google Scholar
  34. Haynes, G., 1983, A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones, Paleobiology 9:164–172.Google Scholar
  35. Henshilwood, C. S., 1997, Identifying the collector: evidence for human processing of the Cape dune mole-rat, Bathyergus suillus, from Blombos Cave, Southern Cape, South Africa, J. Archaeol. Sci. 24:659–662.CrossRefGoogle Scholar
  36. Hoffman, R., 1988, The contribution of raptorial birds to patterning in small mammal assemblages, Paleobiology 14:81–90.Google Scholar
  37. Horwitz, L. K., and Goldberg, P., 1989, A study of Pleistocene and Holocene hyena coprolites, J. Archaeol. Sci. 16:71–94.CrossRefGoogle Scholar
  38. Jacobs, L. L., 1985, Review of ‘The Omo Micromammals’ by H.B. Wesselman, J. Vert. Paleontol. 5:281–283.CrossRefGoogle Scholar
  39. Korth, W. W., 1979, Taphonomy of micro vertebrate fossil assemblages, Annals Carnegie Mus. 48:235–285.Google Scholar
  40. Kotler, B. P., Brown, J. S. and Hasson, O., 1991, Factors affecting gerbil foraging behavior and rates of owl predation, Ecology 72:2249–2260.CrossRefGoogle Scholar
  41. Kowalski, K., 1990, Some problems with the taphonomy of small mammals, in: International Symposium Evolution, Phylogeny and Biostratigraphy of Arvicolids (Rodentia, Mammalia) (O. Fejfar and W. D. Heinrich, eds.), Geological Survey, Prague, pp. 285–295.Google Scholar
  42. Kusmer, K. D., 1990, Taphonomy of owl pellet deposition, J. Paleontol. 64:629–637.Google Scholar
  43. Love, R. A., Webbon, C., Glue, D. and Harris, S., 2000, Changes in the food of British Barn Owls (Tyto alba) between 1974 and 1997, Mamm. Rev. 30(2):107–129.CrossRefGoogle Scholar
  44. Mayhew, D. F., 1977, Avian predators as accumulators of fossil mammal material, Boreas 6:25–31.CrossRefGoogle Scholar
  45. Mellett, J. S., 1974, Scatological origin of micro vertebrate fossil accumulations, Science 185:349–350.CrossRefGoogle Scholar
  46. Montgomery, W. I., 1975, On the relationship between sub-fossil and recent British Water voles, Mamm. Rev. 5:23–29.CrossRefGoogle Scholar
  47. Murphey, P. C., Torick, L. L., Bray, E. S., Chandler, R., and Evanoff, E., 2001, Taphonomy, fauna and depositional environment of the Omomys Quarry, an unusual accumulation from the Bridger Formation (Middle Eocene) of Southwestern Wyoming (USA), in: Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats (G. F. Gunnell, ed.), Kluwer Academic/Plenum Publishers, New York, pp. 361–402.Google Scholar
  48. Raczynski, J., and Ruprecht, A. C., 1974, The effects of digestion on the osteological composition of owl pellets, Acta Ornithol. 14:1–12.Google Scholar
  49. Rautenbach, I. L., 1978, Ecological distribution of the mammals of the Transvaal, Annals Transvaal Mus. 31:131–157.Google Scholar
  50. Saavedra, B., and Simonetti, J. A., 1998, Small mammal taphonomy: intraspecific bone assemblage comparison between South and North American barn owl Tyto alba populations, J. Archaeol. Sci. 25:165–170.CrossRefGoogle Scholar
  51. Schmitt, D. N., and Juell, K. E., 1994, Towards the identification of coyote scatological faunal accumulations in archaeological contexts, J. Archaeol. Sci. 21:249–262.CrossRefGoogle Scholar
  52. Simonetti, J. A., and Cornejo, L. E., 1991, Archaeological evidence of rodent consumption in central Chile, Latin Am. Antiquity 2:92–96.CrossRefGoogle Scholar
  53. Stewart, K. M., Leblanc, L., Matthiesen, D. P., and West, J., 1999, Microfaunal remains from a modern east African raptor roost: patterning and implications for fossil bone scatters, Paleobiology 24:483–503.Google Scholar
  54. Taylor, I., 1994, Barn Owls: Predator-Prey Relationships and Conservation, Cambridge University Press, Cambridge.Google Scholar
  55. Thornton, M. L., and Rasmussen, D. T., 2001, Taphonomic interpretation of Gnat-Out-of-Hell, an Early Uintan small mammal locality in the Unita Formation, Utah, in: Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats (G. F. Gunnell, ed.), Kluwer Academic/Plenum Publishers, New York, pp. 299–316.Google Scholar
  56. Voorhies, M. R., 1969, Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska, Univ. Wyoming Contrib. Geol., Spec. Paper 1:1–69.Google Scholar
  57. Walton, A. H., 1990, Owl pellets and the fossil record, in: Evolutionary Paleobiology of Behavior and Coevolution (by A. J. Boucot), Elsevier, New York, pp. 233–241.Google Scholar
  58. Wesselman, H. B., 1984, The Omo Micromammals, Contributions to Vertebrate Evolution 7, Karger, London.Google Scholar
  59. Williams, J. P., 2001, Small mammal deposits in archaeology: a taphonomic investigation of Tyto alba (barn owl) nesting and roosting sites. Unpublished Ph.D. Thesis, University of Sheffield.Google Scholar
  60. Yalden, D. W., 1999, The History of British Mammals, T & AD Poyser Natural History, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • J. P. Williams
    • 1
  1. 1.English HeritageNorthamptonUK

Personalised recommendations