Mechanisms of topoisomerase I inhibition by anticancer drugs

  • Yves Pommier
  • Juana Barceló
  • Takahisa Furuta
  • Haruyuki Takemura
  • Olivier Sordet


Topoisomerase I (top1) is a validated target for cancer chemotherapy (1-3) since its identification as the sole target of camptothecin (4). The sodium salt of camptothecin was found to be clinically active but its use was discontinued in the 70’s because of severe side effects and lack of understanding of the drug’s mechanism of action (5). The finding in 1985 that camptothecin specifically poisons top1 has generated great interest to find water-soluble, more efficacious and less toxic analogues of camptothecin.


Base Excision Repair Fanconi Anemia Replication Fork Werner Syndrome Nijmegen Breakage Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, T. K. and Liu, L. F. Tumor cell death induced by topoisomerase-targeting drugs, AnnuRev Pharmacol Toxicol. 41: 53-77,2001.CrossRefGoogle Scholar
  2. 2.
    Pommier, Y., Pourquier, P., Fan, Y., and Strumberg, D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme, Biochim. Biophys. Acta. 1400: 83-105,1998.PubMedCrossRefGoogle Scholar
  3. 3.
    Pommier, Y., Pourquier, P., Urasaki, Y., Wu, J., and Laco, G. Topoisomerase I inhibitors: selectivity and cellular resistance, Drug Resistance Update. 2: 307-318, 1999.CrossRefGoogle Scholar
  4. 4.
    Hsiang, Y. H., Hertzberg, R., Hecht, S., and Liu, L. F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I, J. Biol. Chem. 260:14873-14878,1985.PubMedGoogle Scholar
  5. 5.
    Wall, M. E. and Wani, M. C. Camptothecin and taxol: discovery to clinic - thirteenth Bruce F. Cain Memorial Award lecture, Cancer Res. 55:753-760,1995.PubMedGoogle Scholar
  6. 6.
    Gupta, M., Fujimori, A., and Pommier, Y. Eukaryotic DNA topoisomerases I, Biochim. Biophys. Acta. 1262:1-14,1995.PubMedCrossRefGoogle Scholar
  7. 7.
    Hertzberg, R. P., Caranfa, M. J., and Hecht, S. M. On the mechanism of topoisomerase I inhibition by camptothecin: Evidence for binding to an enzyme-DNA complex, Biochemistry. 28:4629-4638,1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Jaxel, C, Kohn, K. W., Wani, M. C, Wall, M. E., and Pommier, Y. Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for a specific receptor site and a relation to antitumor activity, Cancer Res. 49:1465-1469,1989.PubMedGoogle Scholar
  9. 9.
    Jaxel, C, Capranico, G., Kerrigan, D., Kohn, K. W., and Pommier, Y. Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin, J. Biol. Chem. 266:20418-20423,1991.PubMedGoogle Scholar
  10. 10.
    Pommier, Y., Kohlhagen, G., Kohn, F., Leteurtre, F., Wani, M. C, and Wall, M. E. Interaction of an alkylating camptothecin derivative with a DNA base at topoisomerase I-DNA cleavage sites, Proc. Natl. Acad. Sci. U.S.A. 92:8861-8865, 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Redinbo, M. R., Stewart, L., Kuhn, P., Champoux, J. J., and Hol, W. G. J. Crystal structure of human topoisomerase I in covalent and noncovalent complexes with DNA, Science. 279:1504-1513,1998.PubMedCrossRefGoogle Scholar
  12. 12.
    Kerrigan, J. E. and Pilch, D. S. A structural model for the ternary cleavable complex formed between human topoisomerase I, DNA, and camptothecin, Biochemistry. 40: 9792-9798,2001.PubMedCrossRefGoogle Scholar
  13. 13.
    Laco, G., Collins, J. R., Luke, B. T., Kroth, H., Sayer, J. M., Jerina, D. M., and Pommier, Y. Human topoisomerase I inhibition: docking camptothecin and derivatives into a structure-based active site model, Biochemistry 41:1428-35., 2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Pommier, Y., Kohlhagen, G., Laco, G. S., Sayer, J. M., Kroth, H., and Jerina, D. M. Position-specific trapping of topoisomerase I-DNA cleavage complexes by the intercalated benzo[a]pyrene diol epoxide adducts at the 6-amino group of adenine, Proc Natl Acad Sci USA. 97: 10739-10744,2000.PubMedCrossRefGoogle Scholar
  15. 15.
    Pommier, Y., Kohlhagen, G., Laco, G. S., Kroth, H., Sayer, J. M., and Jerina, D. M. Different effects on human topoisomerase I by minor groove and intercalated deoxyguanosine adducts derived from two polycyclic aromatic hydrocarbon diol epoxides at or near a normal cleavage site, J Biol Chem. 277: 13666-72., 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Sim, S. P., Pilch, D. S., and Liu, L. F. Site-specific topoisomerase I-mediated DNA cleavage induced by nogalamycin: a potential role of ligand-induced DNA bending at a distal site, Biochemistry. 39:9928-34,2000.PubMedCrossRefGoogle Scholar
  17. 17.
    Pommier, Y., Kohlhagen, G., Pourquier, P., Sayer, J. M., Kroth, H., and Jerina, D. M. Benzo[a]pyrene epoxide adducts in DNA are potent inhibitors of a normal topoisomerase I cleavage site and powerful inducers of other topoisomerase I cleavages, Proc. Natl. Acad Sci. U.S.A. 97:2040-2045,2000.PubMedCrossRefGoogle Scholar
  18. 18.
    Pourquier, P. and Pommier, Y. Topoisomerase I-mediated DNA damage, Adv Cancer Res. 80: 189-216, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G. J., and Champoux, J. J. A model for the mechanism of human topoisomerase I, Science. 279:1534-1541,1998.PubMedCrossRefGoogle Scholar
  20. 20.
    Horwitz, S. B., Chang, C. K., and Grollman, A. P. Studies on camptothecin. I. Eflfects of nucleic acid and protein synthesis, Mol. Pharmacol. 7:632-644,1971.PubMedGoogle Scholar
  21. 21.
    Holm, C., Covey, J. M., Kerrigan, D., and Pommier, Y. Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells, Cancer Res. 49:6365-6368,1989.PubMedGoogle Scholar
  22. 22.
    O’Connor, P. M, Nieves-Neira, W., Kerrigan, D., Bertrand, R., Goldman, J., Kohn, K. W., and Pommier, Y. S-Phase population analysis does not correlate with the cytotoxicity of camptothecin and 10,11-methylenedioxycamptothecin in human colon carcinoma HT-29 cells, Cancer Commun. 3: 233-240,1991.PubMedGoogle Scholar
  23. 23.
    Mattern, M. R., Hofmann, G. A., McCabe, F. L., and Johnson, R. K. Synergic cell killing by ionizing radiation and topoisomerase I inhibitor topotecan (SK&F 10864), Cancer Research. 51: 5813-5816,1991.PubMedGoogle Scholar
  24. 24.
    Hsiang, Y.-H., Lihou, M. G., and Liu, L. F. Arrest of DNA replication by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin, Cancer Res. 49: 5077-5082,1989.PubMedGoogle Scholar
  25. 25.
    Goldwasser, F., Shimizu, T., Jackman, j., Hoki, Y., O’Connor, P. M., Kohn, K. W., and Pommier, Y. Correlations between S- and G2-phase arrest and cytotoxicity of camptothecin in human colon carcinoma cells, Cancer Res. 56:4430-4437,1996.PubMedGoogle Scholar
  26. 26.
    Nitiss, J. L. and Wang, J. C. Mechanisms of cell killing by drugs that trap covalent complexes between DNA topoisomerases and DNA, Mol. Pharmacol. 50: 1095-1102,1996.PubMedGoogle Scholar
  27. 27.
    Morris, E. J. and Geller, H. M. Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity, J. Cell Biol. 134:757-770,1996.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu, J. and Liu, L. F. Processing of topoisomerase I cleavable complexes into DNA damage by transcription, Nucleic Acids Res. 25:4181-4186,1997.PubMedCrossRefGoogle Scholar
  29. 29.
    Borovitskaya, A. E. and D’Arpa, P. Replication-dependent and -independent camptothecin cytotoxicity of seven human colon tumor cell lines, Oncol Res. 10: 271-6,1998.PubMedGoogle Scholar
  30. 30.
    Zhou, Y., Gwadry, F. G., Reinhold, W. C, Miller, L. D., Smith, L. H., Scherf, U., Liu, E. T., Kohn, K. W., Pommier, Y., and Weinstein, J. N. Transcriptional regulation of mitotic genes by camptothecin-induced DNA damage: microarray analysis of dose-and time-dependent effects, Cancer Res. 62: 1688-95., 2002.PubMedGoogle Scholar
  31. 31.
    Barrows, L. R., Holden, J. A., Anderson, M., and D’Arpa, P. The CHO XRCC1 mutant, EM9, deficient in DNA ligase III activity, exhibits hypersensitivity to camptothecin independent of DNA replication, Mutat Res. 408:103-10,1998.PubMedCrossRefGoogle Scholar
  32. 32.
    Shao, R.-G., Cao, C.-X., Zhang, H., Kohn, K. W., Wold, M. S., and Pommier, Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes, EMBO J. 18: 1397-1406, 1999.PubMedCrossRefGoogle Scholar
  33. 33.
    Snapka, R. M. Topoisomerase inhibitors can selectively interfere with different stages of simian virus 40 DNA replication, Mol.Cell.Biol. 6:4221-4227,1986.PubMedGoogle Scholar
  34. 34.
    Tsao, Y. P., Russo, A., Nyamusa, G., Silber, R., and Liu, L. F. Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cellfree SV40 DNA replication system, Cancer Res. 53: 5908-5914,1993.PubMedGoogle Scholar
  35. 35.
    Strumberg, D., Pilon, A. A., Smith, M., Hickey, R., Malkas, L., and Pommier, Y. Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5’-phosphorylated DNA double-strand breaks by replication runoff, Mol Cell Biol. 20: 3977-87, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Voeller, D. M, Grem, J. L., Pommier, Y., Paull, K., and Allegra, C. J. Identification and proposed mechanism of action of thymidine kinase inhibition associated with cellular exposure to camptothecin analogs, Cancer Chemother Pharmacol. 45:409-16, 2000.PubMedCrossRefGoogle Scholar
  37. 37.
    Shao, R.-G., Cao, C.-X., Shimizu, T., O’Connor, P., Kohn, K. W., and Pommier, Y. Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53, Cancer Res. 57: 4029-4035,1997.PubMedGoogle Scholar
  38. 38.
    Kessel, D. Effects of camptothecin on RNA synthesis in leukemia cells, Biochim. Biophys. Acta. 246:225-232,1971.PubMedCrossRefGoogle Scholar
  39. 39.
    Wu, R. S., Kumar, A., and Warner, J. R. Ribosome formation is blocked by camptothecin, a reversible inhibitor of RNA synthesis, Proc Natl Acad Sci USA. 68: 3009-14., 1971.PubMedCrossRefGoogle Scholar
  40. 40.
    Kann, H. E., Jr. and Kohn, K. W. Effects of deoxyribonucleic acid-reactive drugs on ribonucleic acid synthesis in leukemia L1210 cells, Mol. Pharmacol. 8: 551-560, 1972.PubMedGoogle Scholar
  41. 41.
    Gilmour, D. S. and Elgin, S. C. Localization of specific topoisomerase I interactions within the transcribed region of active heat shock genes by using the inhibitor camptothecin, Mol.Cell.Biol. 7:l4l-l48,1987.Google Scholar
  42. 42.
    Rowe, T. C, Couto, E., and Kroll, D. J. Camptothecin inhibits hsp 70 heat-shock transcription and induces DNA strand breaks in hsp 70 genes in Drosophila, NCI Monogr. 4:49-53,1987.PubMedGoogle Scholar
  43. 43.
    Zhang, H., Wang, J. C, and Liu, L. F. Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes, Proc. Natl. Acad. Sci. U.S.A. 85:1060-1064, 1988.PubMedCrossRefGoogle Scholar
  44. 44.
    Stewart, A. F., Herrera, R. E., and Nordheim, A. Rapid induction of c-fos transcription reveals quantitive linkage of RNA polymerase II and DNA topoisomerase I enzyme activities, Cell. 60:141-146,1990.PubMedCrossRefGoogle Scholar
  45. 45.
    Ljungman, M. and Hanawalt, P. C. The anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription, Carcinogenesis. 17: 31-35,1996.PubMedCrossRefGoogle Scholar
  46. 46.
    Muscarella, D. E., Rachlinski, M. K., Sotiriadis, J., and Bloom, S. E. Contribution of gene-specific lesions, DNA-replication-associated damage, and subsequent transcriptional inhibition in topoisomerase inhibitor-mediated apoptosis in lymphoma cells, Exp Cell Res. 238:155-67., 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Collins, I., Weber, A., and Levens, D. Transcriptional consequences of topoisomerase inhibition, Mol Cell Biol. 21: 8437-51., 2001.PubMedCrossRefGoogle Scholar
  48. 48.
    Bendixen, C, Thomsen, B., Alsner, J., and Westergaard, O. Camptothecin-stabilized topoisomerase I-DNA adducts cause premature termination of transcription, Biochemistry. 29: 5613-5619,1990.PubMedCrossRefGoogle Scholar
  49. 49.
    Squires, S., Ryan, A. J„ Strutt, H. L., and Johnson, R. T. Hypersensitivity of Cockayne’s syndrome cells to camptothecins is associated with the generation of abnormally high levels of double strand breaks in nascent DNA, Cancer Res. 53: 2012-2019,1993.PubMedGoogle Scholar
  50. 50.
    Nelson, W. G. and Kastan, M. B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways, Mol. Cel. Biol. 14: 1815-1823,1994.Google Scholar
  51. 51.
    Kharbanda, S., Rubin, E., Gunji, H., Hinz, H., Giovanella, B., Pantazis, P., and Kufe, D. Camptothecin and its derivatives induce expression of the c-jun protooncogene in human myeloid leukemia cells, Cancer Research. 57:6636-6642,1991.Google Scholar
  52. 52.
    Zhao, H., Jin, S., Fan, F., Fan, W., Tong, T., and Zhan, Q. Activation of the transcription factor Oct-1 in response to DNA damage, Cancer Res. 60: 6276-80., 2000.PubMedGoogle Scholar
  53. 53.
    Piret, B. and Piette, J. Topoisomerase poisons activate the transcription factor NF-kappaB in ACH-2 and CEM cells, Nucleic Acids Res. 24:4242-8., 1996.PubMedCrossRefGoogle Scholar
  54. 54.
    Huang, T. T., Wuerzberger-Davis, S. M., Seufzer, B. J., Shumway, S. D., Kurama, T., Boothman, D. A., and Miyamoto, S. NF-kappa B Activation by Camptothecin. A LINKAGE BETWEEN NUCLEAR DNA DAMAGE AND CYTOPLASMIC SIGNALING EVENTS, J. Biol. Chem. 275: 9501-9509, 2000.PubMedCrossRefGoogle Scholar
  55. 55.
    Daoud, S. S., Munson, P. J., Reinhold, W. C., Young, L., Prabhu, V., Yu, Q., La Rose, J. H., Kohn, K. W., Weinstein, J. N., and Pommier, Y. A new approach (GEM) for design, analysis, and visualization of gene expression experiments in molecular pharmacology: application to p53- and topotecan-dependence studies, Proc Am Assoc Cancer Res. 43:1085,2002.Google Scholar
  56. 56.
    Wang, J. C. DNA topoisomerases, Annu. Rev. Biochem. 65: 635-692, 1996.PubMedCrossRefGoogle Scholar
  57. 57.
    Duann, P., Sun, M., C.-T., L., Zhang, H., and Liu, L. F. Plasmid linking number change induced by topoisomerase I-mediated DNA damage, Nucleic Acids Res. 27: 2905-2911,1999.PubMedCrossRefGoogle Scholar
  58. 58.
    Merino, A., Madden, K. R., Lane, W. S., Champoux, J. J., and Reinberg, D. DNA topoisomerase I is involved in both repression and activation of transcription, Nature. 365:227-232,1993.PubMedCrossRefGoogle Scholar
  59. 59.
    Kretzschmar, M., Meisterernst, M., and Roeder, R. G. Identification of human DNA topoisomerase I as a cofactor for activator-dependent transcription by RNA polymerase II, Proc. Natl. Acad. Sci. U.S.A. 90:11508-11512,1993.PubMedCrossRefGoogle Scholar
  60. 60.
    Shykind, B. M., Kim, J., Stewart, L., Champoux, J. J., and Sharp, P. A. Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription, Genes & Development. 11: 397-407, 1997.PubMedCrossRefGoogle Scholar
  61. 61.
    Rossi, F., Labourier, E., Forne, T., Divita, G., Derancourt, J., Riou, J. F., Antoine, E., Cathala, G., Brunei, C., and Tazi, J. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I, Nature. 381:80-82,1996.PubMedCrossRefGoogle Scholar
  62. 62.
    Rossi, E., Labourier, E., Gallouzi, I.-E., Derancourt, J., Allemand, E., Divita, G., and Tazi, J. The C-terminal domain but not the tyrosine 723 of human DNA topoisomerase I active site contributes to kinase activity, Nucleic Acids Res. 26: 2963-2970, 1998.PubMedCrossRefGoogle Scholar
  63. 63.
    Labourier, E., Rossi, F., Gallouzi, I.-E., Allemand, E., Divita, G., and Tazi, J. Interaction between the N-terminal domain of human DNA topoisomerase I and the arginine-serine domain of its substrate determines phosphorylation of SF2/ASF splicing factor, Nucleic Acids Res. 26: 2955-2962, 1998.PubMedCrossRefGoogle Scholar
  64. 64.
    Straub, T., Grue, P., Uhse, A., Lisby, M., Knudsen, B. R., Tange, T., Westergaard, O., and Boege, F. The RNA-splicing factor PSF/p54 controls DNA-topoisomerase I activity by a direct interaction, J Biol Chem. 273: 26261-4,1998.PubMedCrossRefGoogle Scholar
  65. 65.
    Pouliot, J. J., Yao, K. C., Robertson, C. A., and Nash, H. A. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topo I covalent complexes, Science. 286: 552-555,1999.PubMedCrossRefGoogle Scholar
  66. 66.
    Yang, S.-W., Burgin, A. B., Huizenga, B. N„ Robertson, C. A., Yao, K. C, and Nash, H. A. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases, Proc. Natl. Acad. Sci. U.S.A. 93:11534-11539, 1996.PubMedCrossRefGoogle Scholar
  67. 67.
    Interthal, H., Pouliot, J. J., and Champoux, J. J. The tyrosyl-DNA phosphodiesterase Tdpl is a member of the phospholipase D superfamily, Proc Natl Acad Sci USA. 98: 12009-14., 2001.PubMedCrossRefGoogle Scholar
  68. 68.
    Stuckey, J. A. and Dixon, J. E. Crystal structure of a phospholipase D family member, Nat Struct Biol. 6:278-84., 1999.PubMedCrossRefGoogle Scholar
  69. 69.
    Davies, D. R., Interthal, H., Champoux, J. J., and Hoi, W. G. The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdpl, Structure (Camb). 10: 237-48., 2002.CrossRefGoogle Scholar
  70. 70.
    Debethune, L., Kohlhagen, G., Grandas, A., and Pommier, Y. Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase, Nucleic Acids Res. 30:1198-204., 2002.PubMedCrossRefGoogle Scholar
  71. 71.
    Beidler, D. R. and Cheng, Y.-C. Camptothecin induction of a time- and concentration-dependent decrease of topoisomerase I and its implication in camptothecin activity, Mol. Pharmacol. 47: 907-914, 1995.PubMedGoogle Scholar
  72. 72.
    Desai, S. D., Liu, L. F., Vazquez-Abad, D., and D’Arpa, P. Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin, J. Biol. Chem. 272:24159-24164,1997.PubMedCrossRefGoogle Scholar
  73. 73.
    Vance, J. R. and Wilson, T. E. Uncoupling of 3’-phosphatase and 5-kinase functions in budding yeast Characterization of Saccharomyces cerevisiae DNA 3’-phosphatase (TPP1), J Biol Chem. 276:15073-81., 2001.PubMedCrossRefGoogle Scholar
  74. 74.
    Meijer, M, Karimi-Busheri, F., Huang, T. Y., Weinfeld, M, and Young, D. Pnkl, a DNA kinase/phosphatase required for normal response to DNA damage by gamma-radiation or camptothecin in Schizosaccharomyces pombe, J Biol Chem. 277:4050-5., 2002.PubMedCrossRefGoogle Scholar
  75. 75.
    Smith, P. J., Makinson, T. A., and Watson, J. V. Enhanced sensitivity to camptothecin in ataxia telangiectasia cells and its relationship with the expression of DNA topoisomerase I, Int. J. Radiat. Biol. 55:217-231, 1989.PubMedCrossRefGoogle Scholar
  76. 76.
    Johnson, R. T., Gotoh, E., Mullinger, A. M, Ryan, A. J., Shiloh, Y., Ziv, Y., and Squires, S. Targeting double-strand breaks to replicating DNA identifies a subpathway of DSB repair that is defective in ataxia-telangiectasia cells, Biochem Biophys Res Commun. 261: 317-25,1999.PubMedCrossRefGoogle Scholar
  77. 77.
    Eng, W. K., Faucette, L., Johnson, R. K., and Sternglanz, R. Evidence that DNA topoisomerase I is necessary for the cytotoxic effects of camptothecin, Mol. Pharmacol. 34: 755-760,1988.PubMedGoogle Scholar
  78. 78.
    Nitiss, J. and Wang, J. C. DNA topoisomerase-targeting antitumor drugs can be studied in yeast, Proc. Natl. Acad. Sci. U.S.A. 85: 7501-7505,1988.PubMedCrossRefGoogle Scholar
  79. 79.
    Michel, B., Flores, M. J., Viguera, E., Grompone, G., Seigneur, M., and Bidnenko, V. Rescue of arrested replication forks by homologous recombination, Proc Natl Acad Sci US A. 98: 8181-8., 2001.CrossRefGoogle Scholar
  80. 80.
    Klein, H. L. and Kreuzer, K. N. Replication, recombination, and repair: going for the gold, Mol Cell. 9:471-80., 2002.PubMedCrossRefGoogle Scholar
  81. 81.
    Baumann, P. and West, S. C. Role of the human RAD51 protein in homologous recombination and double- stranded-break repair, Trends Biochem Sci. 23:247-51., 1998.PubMedCrossRefGoogle Scholar
  82. 82.
    Gaymes, T. J., North, P. S., Brady, N., Hickson, I. D., Mufti, G. J., and Rassool, F. V. Increased error-prone non homologous DNA end-joining-a proposed mechanism of chromosomal instability in Bloom’s syndrome, Oncogene. 21:2525-33., 2002.PubMedCrossRefGoogle Scholar
  83. 83.
    Thacker, J. and Ganesh, A. N. DNA-break repair, radioresistance of DNA synthesis, and camptothecin sensitivity in the radiation-sensitive irs mutants: comparisons to ataxia-telangiectasia cells, Mutat Res. 235: 49-58,1990.PubMedCrossRefGoogle Scholar
  84. 84.
    Caldecott, K. and Jeggo, P. Cross-sensitivity of gamma-ray-sensitive hamster mutants to cross- linking agents, Mutat Res. 255: 111-21,1991.PubMedCrossRefGoogle Scholar
  85. 85.
    Godthelp, B. C, Wiegant, W. W., van Duijn-Goedhart, A., Scharer, O. D., van Buul, P. P., Kanaar, R., and Zdzienicka, M. Z. Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability, Nucleic Acids Res. 30: 2172-82., 2002.PubMedCrossRefGoogle Scholar
  86. 86.
    Simbulan-Rosenthal, C. M., Rosenthal, D. S., Iyer, S., Boulares, A. H., and Smulson, M. E. Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis, J Biol Chem. 273:13703-12., 1998.PubMedCrossRefGoogle Scholar
  87. 87.
    Chatterjee, S., Cheng, M.-F., Trivedi, D., Petzold, S. J., and Berger, N. A. Camptothecin hypersensitivity in poly(adenosine diphosphate-ribose) polymerase-deficient cell lines, Cancer Commun. 1:389-394,1989.PubMedGoogle Scholar
  88. 88.
    Chatterjee, S., Hirschler, N. V., Petzold, S. J., Berger, S. J., and Berger, N. A. Mutant cells defective in poly(ADP-ribose) synthesis due to stable alterations in enzyme activity or substrate availability, Exp. Cell. Res. 184: 1-15,1989.PubMedCrossRefGoogle Scholar
  89. 89.
    Staron, K., Kowalska-Loth, B., Nieznanski, K., and Szumiel, I. Phosphorylation of topoisomerase I in L5178Y-S cells is associated with poly(ADP-ribose) metabolism, Carcinogenesis. 17: 383-7., 1996.PubMedCrossRefGoogle Scholar
  90. 90.
    Mattern, M. R., Mong, S. M., Bartus, H. F., Mirabelli, C. K., Crooke, S. T., and Johnson, R. K. Relationship between the intracellular effects of camptothecin and the inhibition of DNA topoisomerase I in cultured L1210 cells, Cancer Research. 47: 1793-1798, 1987.Google Scholar
  91. 91.
    Bowman, K. J., Newell, D. R., Calvert, A. H., and Curtin, N. J. Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro, Br J Cancer. 84:106-12., 2001.PubMedCrossRefGoogle Scholar
  92. 92.
    Park, S. Y., Lam, W., and Cheng, Y. C. X-ray repair cross-complementing gene I protein plays an important role in camptothecin resistance, Cancer Res. 62:459-65., 2002.PubMedGoogle Scholar
  93. 93.
    Whitehouse, C. J., Taylor, R. M, Thistlethwaite, A., Zhang, H., Karimi-Busheri, F., Lasko, D. D., Weinfeld, M., and Caldecott, K. W. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand breaks, Cell. 104: 107-117,2001.PubMedCrossRefGoogle Scholar
  94. 94.
    Thompson, L. H. and West, M. G. XRCC1 keeps DNA from getting stranded, Mutat Res. 459: 1-18, 2000.PubMedCrossRefGoogle Scholar
  95. 95.
    de Murcia, G. and Menissier de Murcia, J. Poly(ADP-ribose) polymerase: a molecular nick-sensor, Trends Biochem Sci. 19:172-6., 1994.PubMedCrossRefGoogle Scholar
  96. 96.
    D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G. G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions, Biochem J. 342:249-68., 1999.PubMedCrossRefGoogle Scholar
  97. 97.
    Kasid, U. N., Halligan, B., Liu, L. F., Dritschilo, A., and Smulson, M. Poly(ADP-ribose)-mediated post-translational modification of chromatin-associated human topoisomerase I. Inhibitory effects on catalytic activity, J.Biol.Chem. 264: 18687-18692,1989.PubMedGoogle Scholar
  98. 98.
    Ferro, A. M. and Olivera, B. M. Poly(ADP-ribosylation) of DNA topoisomerase I from calf thymus, J.Biol.Chem. 259: 547-554,1984.PubMedGoogle Scholar
  99. 99.
    Smith, H. M. and Grosovsky, A. J. PolyADP-ribose-mediated regulation of p53 complexed with topoisomerase I following ionizing radiation, Carcinogenesis. 20: 1439-1444,1999.PubMedCrossRefGoogle Scholar
  100. 100.
    Bauer, P. I., Buki, K. G., Comstock, J. A., and Kun, E. Activation of topoisomerase I by poly [ADP-ribose] polymerase, Int J Mol Med. 5:533-40,2000.PubMedGoogle Scholar
  101. 101.
    Fu, Q., Kim, S. W., Chen, H. X., Grill, S., and Cheng, Y. C. Degradation of topoisomerase I induced by topoisomerase I inhibitors is dependent on inhibitor structure but independent of cell death, Mol Pharmacol. 55: 677-83,1999.PubMedGoogle Scholar
  102. 102.
    Mao, Y., Sun, M., Desai, S. D., and Liu, L. F. SUMO-1 conjugation to topoisomerase I: A possible repair response to topoisomerase-mediated DNA damage, Proc Natl Acad Sci USA. 97:4046-51., 2000.PubMedCrossRefGoogle Scholar
  103. 103.
    Almond, J. B. and Cohen, G. M. The proteasome: a novel target for cancer chemotherapy, Leukemia 16:433-43., 2002.PubMedCrossRefGoogle Scholar
  104. 104.
    D’Arpa, P. and Liu, L. F. Cell cycle-specific and transcription-related phosphorylation of mammalian topoisomerase I, Exp. Cell Res. 217:125-131, 1995.PubMedCrossRefGoogle Scholar
  105. 105.
    Desai, S. D., Li, T. K., Rodriguez-Bauman, A., Rubin, E. H., and Liu, L. F. Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells, Cancer Res. 61: 5926-32., 2001.PubMedGoogle Scholar
  106. 106.
    Rubin, E., Wood, V., Bharti, A., Trites, D., Lynch, C, Hurwitz, S., Bartel, S., Levy, S., Rosowsky, A., Toppmeyer, D., and et al. A phase I and pharmacokinetic study of a new camptothecin derivative, 9- aminocamptothecin, Clin Cancer Res. 7:269-76., 1995.Google Scholar
  107. 107.
    Saleem, A., Edwards, T. K., Rasheed, Z., and Rubin, E. H. Mechanisms of resistance to camptothecins, Ann N Y Acad Sci. 922:46-55,2000.PubMedCrossRefGoogle Scholar
  108. 108.
    Cusack, J. C, Jr., Liu, R., Houston, M, Abendroth, K., Elliott, P. J., Adams, J., and Baldwin, A. S., Jr. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition, Cancer Res. 61: 3535-40., 2001.PubMedGoogle Scholar
  109. 109.
    Adams, J. Development of the proteasome inhibitor PS-341, Oncologist 7: 9-16, 2002.PubMedCrossRefGoogle Scholar
  110. 110.
    Mo, Y.-Y., Yu, Y., Shen, Z., and Beck, W. T. Nucleolar Delocalization of Human Topoisomerase I in Response to Topotecan Correlates with Sumoylation of the Protein, J. Biol. Chem. 277:2958-2964,2002.PubMedCrossRefGoogle Scholar
  111. 111.
    Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C, Moyzis, R. K., and Chen, D. J. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins, Genomics. 36:271-9., 1996.PubMedCrossRefGoogle Scholar
  112. 112.
    Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia, Oncogene. 13:971-82., 1996.PubMedGoogle Scholar
  113. 113.
    Matunis, M. J., Coutavas, E., and Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAPl between the cytosol and the nuclear pore complex, J Cell Biol. 735:1457-70., 1996.CrossRefGoogle Scholar
  114. 114.
    Lapenta, V., Chiurazzi, P., van der Spek, P., Pizzuti, A., Hanaoka, F., and Brahe, C. SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family, Genomics. 40:362-6., 1997.PubMedCrossRefGoogle Scholar
  115. 115.
    Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh, E. T. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin, J Immunol. 157:4277-81., 1996.PubMedGoogle Scholar
  116. 116.
    Wilson, V. G. and Rangasamy, D. Intracellular targeting of proteins by sumoylation, Exp Cell Res. 271: 57-65., 2001.PubMedCrossRefGoogle Scholar
  117. 117.
    Johnson, R. T., Gotoh, E., Mullinger, A. M., Ryan, A. J., Shiloh, Y., and Squires, S. Targeting double-strand breaks to replicating DNA identies a subpathway of DSB repair that is defective in Ataxia-Telangiectasia cells, Biochem. Biophys. Res. Comm. 261:317-325, 1999.PubMedCrossRefGoogle Scholar
  118. 118.
    Jones, N. J., Ellard, S., Waters, R., and Parry, E. M. Cellular and chromosomal hypersensitivity to DNA crosslinking agents and topoisomerase inhibitors in the radiosensitive Chinese hamster irs mutants: phenotypic similarities to ataxia telangiectasia and Fanconi’s anaemia cells, Carcinogenesis. 14:2487-94,1993.PubMedCrossRefGoogle Scholar
  119. 119.
    Johnson, M. A., Bryant, P. E., and Jones, N. J. Isolation of camptothecin-sensitive Chinese hamster cell mutants: phenotypic heterogeneity within the ataxia telangiectasia-like XRCC8 (irs2) complementation group, Mutagenesis. 75:367-374, 2000.CrossRefGoogle Scholar
  120. 120.
    Banin, S., Moyal, L., Shieh, S.-Y., Anderson, C. W., Chessa, L„ Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage, Science. 281: 1674-1677, 1998.PubMedCrossRefGoogle Scholar
  121. 121.
    Canman, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B., and Siliciano, J. D. Activation of the ATM Kinase by Ionizing Radiation and Phosphorylation of p53, Science. 281: 1677-9,1998.PubMedCrossRefGoogle Scholar
  122. 122.
    Khanna, K. K., Keating, K. E., Kozlov, S., Scott, S., Gatei, M, Hobson, K., Taya, Y., Gabrielli, B., Chan, D., Lees-Miller, S. P., and Lavin, M. F. ATM associates with and phosphorylates p53: mapping the region of interaction, Nat Genet. 20:398-400., 1998.PubMedCrossRefGoogle Scholar
  123. 123.
    Matsuoka, S., Huang, M., and Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase, Science. 282: 893-897,1998.CrossRefGoogle Scholar
  124. 124.
    Lim, D. S., Kim, S. T., Xu, B., Maser, R. S., Lin, J., Petrini, J. H., and Kastan, M. B. ATM phosphorylates p95/nbsl in an S-phase checkpoint pathway, Nature. 404:613-7, 2000.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhao, S., Weng, Y. C, Yuan, S. S., Lin, Y. T., Hsu, H. C, Lin, S. C, Gerbino, E., Song, M. H., Zdzienicka, M. Z., Gatti, R. A., Shay, J. W., Ziv, Y., Shiloh, Y., and Lee, E. Y. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products, Nature. 405:473-7., 2000.PubMedCrossRefGoogle Scholar
  126. 126.
    Gatei, M., Young, D., Cerosaletti, K. M., Desai-Mehta, A., Spring, K., Kozlov, S., Lavin, M. F., Gatti, R. A., Concannon, P., and Khanna, K. ATM-dependent phosphorylation of nibrin in response to radiation exposure, Nat Genet 25:115-9, 2000.PubMedCrossRefGoogle Scholar
  127. 127.
    Wu, X., Ranganathan, V., Weisman, D. S., Heine, W. F., Ciccone, D. N., O’Neill, T. B., Crick, K. E., Pierce, K. A., Lane, W. S., Rathbun, G., Livingston, D. M., and Weaver, D. T. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response, Nature. 405:477-82., 2000.PubMedCrossRefGoogle Scholar
  128. 128.
    Cortez, D., Wang, Y., Qin, J., and Elledge, S. J. Requirement of ATM-dependent phosphorylation of brcal in the DNA damage response to double-strand breaks, Science. 286: 1162-6., 1999.PubMedCrossRefGoogle Scholar
  129. 129.
    Rappold, I., Iwabuchi, K., Date, T., and Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways, J Cell Biol. 153: 613-20., 2001.PubMedCrossRefGoogle Scholar
  130. 130.
    Wu, X., Petrini, J. H., Heine, W. F., Weaver, D. T., Livingston, D. M., and Chen, J. Independence of R/M/N focus formation and the presence of intact BRCA1, Science. 289:11.,2000.PubMedCrossRefGoogle Scholar
  131. 131.
    Xu, B., Kim, S., and Kastan, M. B. Involvement of Brcal in S-phase and G(2)-phase checkpoints after ionizing irradiation, Mol Cell Biol. 21: 3445-50., 2001.PubMedCrossRefGoogle Scholar
  132. 132.
    Piret, B., Schoonbroodt, S., and Piette, J. The ATM protein is required for sustained activation of NF-kappaB following DNA damage, Oncogene. 18:2261-71,1999.PubMedCrossRefGoogle Scholar
  133. 133.
    Petrini, J. H. The Mre 11 complex and ATM: collaborating to navigate S phase, Curr Opin Cell Biol. 12: 293-296,2000.PubMedCrossRefGoogle Scholar
  134. 134.
    Hopfner, K. P., Putnam, C. D., and Tainer, J. A. DNA double-strand break repair from head to tail, Curr Opin Struct Biol. 12:115-22., 2002.PubMedCrossRefGoogle Scholar
  135. 135.
    Zhong, Q., Chen, C. F., Li, S., Chen, Y., Wang, C. C., Xiao, J., Chen, P. L., Sharp, Z. D., and Lee, W. H. Association of BRCA1 with the hRad50-hMrell-p95 complex and the DNA damage response, Science. 285: 747-50,1999.PubMedCrossRefGoogle Scholar
  136. 136.
    Wang, Y., Cortez, D., Yazdi, P., Neff, N., Elledge, S. J., and Qin, J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14:927-939, 2000.PubMedGoogle Scholar
  137. 137.
    Wang, Y., Cortez, D., Yazdi, P., Neff, N., Elledge, S. J., and Qin, J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14: 927-39., 2000.PubMedGoogle Scholar
  138. 138.
    Paull, T. T. and Gellert, M. The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks, Mol. Cell. 1:969-979,1998.PubMedCrossRefGoogle Scholar
  139. 139.
    Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage, Curr Biol. 10: 886-95,2000.PubMedCrossRefGoogle Scholar
  140. 140.
    Stewart, G. S., Maser, R. S., Stankovic, T., Bressan, D. A., Kaplan, M. I., Jaspers, N. G., Raams, A., Byrd, P. J., Petrini, J. H., and Taylor, A. M. The DNA double-strand break repair gene hMREl 1 is mutated in individuals with an ataxia-telangiectasia-like disorder, Cell. 99: 577-87,1999.PubMedCrossRefGoogle Scholar
  141. 141.
    Mirzoeva, O. K. and Petrini, J. H. DNA damage-dependent nuclear dynamics of the mrell complex, Mol Cell Biol. 21:281-8,2001.PubMedCrossRefGoogle Scholar
  142. 142.
    Dong, Z., Zhong, Q., and Chen, P. L. The Nijmegen breakage syndrome protein is essential for Mrell phosphorylation upon DNA damage, J Biol Chem. 274:19513-6, 1999.PubMedCrossRefGoogle Scholar
  143. 143.
    Johnson, M. A. and Jones, N. J. The isolation and genetic analysis of V79-derived etoposide sensitive Chinese hamster cell mutants: two new complementation groups of etoposide sensitive mutants, Mutation Res. 435:271-282,1999.PubMedCrossRefGoogle Scholar
  144. 144.
    Kraakman-van der Zwet, M., Overkamp, W. J., Friedl, A. A., Klein, B., Verhaegh, G. W., Jaspers, N. G., Midro, A. T., Eckardt-Schupp, F., Lohman, P. H., and Zdzienicka, M. Z. Immortalization and characterization of Nijmegen Breakage syndrome fibroblasts, Mutat Res. 434: 17-27,1999.CrossRefGoogle Scholar
  145. 145.
    Wu, J., Yin, M. B., Hapke, G., Toth, K., and Rustum, Y. M. Induction of biphasic DNA double strand breaks and activation of multiple repair protein complexes by DNA topoisomerase I drug 7-ethyl- 10-hydroxy-camptothecin, Mol Pharmacol. 61: 742-8., 2002.PubMedCrossRefGoogle Scholar
  146. 146.
    Busby, E. C., Leistritz, D. F., Abraham, R. T., Karnitz, L. M„ and Sarkaria, J. N. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChkl, Cancer Res. 60:2108-12,2000.PubMedGoogle Scholar
  147. 147.
    Graves, P. R., Yu, L., Schwarz, J. K., Gales, J., Sausville, E. A., O’Connor, P. M., and Piwnica-Worms, H. The Chkl protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01, J Biol Chem. 275: 5600-5,2000.PubMedCrossRefGoogle Scholar
  148. 148.
    Yu, Q., La Rose, J. H., Zhang, H., and Pommier, Y. Inhibition of Chk2 activity and radiation-induced p53 elevation by the cell cycle checkpoint abrogator 7-hydroxystaurosporine (UCN-01), Proc Am Assoc Cancer Res. 42: 800,2001.Google Scholar
  149. 149.
    Kharbanda, S., Pandey, P., Jin, S., Inoue, S., Yuan, Z.-M., Weichselbaum, R., Weaver, D., and Kufe, D. Functional interaction between DNA-PK and c-Abl in response to DNA damage, Nature. 386: 732-5,1997.PubMedCrossRefGoogle Scholar
  150. 150.
    Zhou, B. B. and Elledge, S. J. The DNA damage response: putting checkpoints in perspective, Nature. 408: 433-9., 2000.PubMedCrossRefGoogle Scholar
  151. 151.
    Caspari, T. and Carr, A. M. Checkpoints: how to flag up double-strand breaks, Curr Biol. 12: R105-7., 2002.PubMedCrossRefGoogle Scholar
  152. 152.
    Caspari, T., Dahlen, M., Kanter-Smoler, G., Lindsay, H. D., Hofmann, K., Papadimitriou, K., Sunnerhagen, P., and Carr, A. M. Characterization of Schizosaccharomyces pombe Husl: a PCNA-related protein that associates with Radl and Rad9, Mol Cell Biol. 20: 1254-62, 2000.PubMedCrossRefGoogle Scholar
  153. 153.
    Kondo, T., Matsumoto, K., and Sugimoto, K. Role of a complex containing radl 7, mec3, and ddcl in the yeast DNA damage checkpoint pathway, Mol Cell Biol. 19: 1136-43,1999.PubMedGoogle Scholar
  154. 154.
    Kostrub, C. F., al-Khodairy, F., Ghazizadeh, H., Carr, A. M., and Enoch, T. Molecular analysis of husl+, a fission yeast gene required for S-M and DNA damage checkpoints, Mol Gen Genet 254: 389-99,1997.PubMedGoogle Scholar
  155. 155.
    Volkmer, E. and Karnitz, L. M. Human homologs of Schizosaccharomyces pombe radl, husl, and rad9 form a DNA damage-responsive protein complex, J Biol Chem. 274: 567-70,1999.PubMedCrossRefGoogle Scholar
  156. 156.
    Rauen, M., Burtelow, M. A., Dufault, V. M., and Karnitz, L. M. The human checkpoint protein hRadl7 interacts with the PCNA-like proteins hRadl, hHusl, and hRad9, J Biol Chem. 275:29767-71,2000.PubMedCrossRefGoogle Scholar
  157. 157.
    Komatsu, K., Miyashita, T., Hang, H., Hopkins, K. M., Zheng, W., Cuddeback, S., Yamada, M., Lieberman, H. B., and Wang, H.-G. Human homoloue of S.pombe Rad9 interacts with BCL-2/BCL-XL and promotes apoptosis, Nature Cell Biology. 2: 1-6, 2000.PubMedCrossRefGoogle Scholar
  158. 158.
    Venclovas, C. and Thelen, M. P. Structure-based predictions of radl, rad9, husl and radl7 participation in sliding clamp and clamp-loading complexes, Nucleic Acids Res. 28:2481-93,2000.PubMedCrossRefGoogle Scholar
  159. 159.
    Burtelow, M. A., Kaufmann, S. H., and Karnitz, L. M. Retention of the human Rad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage, J Biol Chem. 275:26343-8,2000.PubMedCrossRefGoogle Scholar
  160. 160.
    Weiss, R. S., Enoch, T., and Leder, P. Inactivation of mouse Husl results in genomic instability and impaired responses to genotoxic stress, Genes Dev. 14:1886-1898, 2000.PubMedGoogle Scholar
  161. 161.
    Cortez, D., Guntuku, S., Qin, J., and Elledge, S. J. ATR and ATRIP: partners in checkpoint signaling, Science. 294:1713-6., 2001.PubMedCrossRefGoogle Scholar
  162. 162.
    Cliby, W. A., Roberts, C. J., Cimprich, K. A., Stringer, C. M, Lamb, J. R., Schreiber, S. L., and Friend, S. H. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints, Embo J. 77:159-169,1998.CrossRefGoogle Scholar
  163. 163.
    Cliby, W. A., Lewis, K. A., Lilly, K. K., and Kaufmann, S. H. S Phase and G2 Arrests Induced by Topoisomerase I Poisons Are Dependent on ATR Kinase Function, J. Biol. Chem. 277:1599-1606,2002.PubMedCrossRefGoogle Scholar
  164. 164.
    Walworth, N. and Bernards, R. Rad-dependent responses of the Chkl -encoded protein kinase at the DNA damage checkpoint, Science. 271: 353-356,1996.PubMedCrossRefGoogle Scholar
  165. 165.
    Walworth, N. C. Rad9 comes of age, Science. 281: 185-186,1998.PubMedCrossRefGoogle Scholar
  166. 166.
    Brondello, J. M., Boddy, M. N., Furnari, B., and Russell, P. Basis for the checkpoint signal specificity that regulates chkl and cdsl protein kinases, Mol Cell Biol. 19: 4262-9,1999.PubMedGoogle Scholar
  167. 167.
    Liao, S., Graham, J., and Yan, H. The function of xenopus Bloom’s syndrome protein homolog (xBLM) in DNA replication, Genes Dev. 14: 2570-5,2000.PubMedCrossRefGoogle Scholar
  168. 168.
    Chakraverty, R. K., Kearsey, J. M, Oakley, T. J., Grenon, M, de La Torre Ruiz, M. A., Lowndes, N. F., and Hickson, I. D. Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint, Mol Cell Biol. 21: 7150-62., 2001.PubMedCrossRefGoogle Scholar
  169. 169.
    Goodwin, A., Wang, S. W., Toda, T., Norbury, C, and Hickson, I. D. Topoisomerase III is essential for accurate nuclear division in Schizosaccharomyces pombe, Nucleic Acids Res. 27:4050-4058,1999.PubMedCrossRefGoogle Scholar
  170. 170.
    Gangloff, S., de Massy, B., Arthur, L., Rothstein, R., and Fabre, F. The essential role of yeast topoisomerase III in meiosis depends on recombination, Embo J. 18:1701-11, 1999.PubMedCrossRefGoogle Scholar
  171. 171.
    Yankiwski, V., Marciniak, R. A., Guarente, L., and Neff, N. F. Nuclear structure in normal and Bloom syndrome cells, Proc Natl Acad Sci USA. 97:5214-5219,2000.PubMedCrossRefGoogle Scholar
  172. 172.
    Kamath-Loeb, A. S., Johansson, E., Burgers, P. M., and Loeb, L. A. Functional interaction between the werner syndrome protein and DNA polymerase delta, Proc Natl Acad Sci USA. 97:4603-8,2000.PubMedCrossRefGoogle Scholar
  173. 173.
    Rothstein, R., Michel, B., and Gangloff, S. Replication fork pausing and recombination or “gimme a break”, Genes & Development 14:1-10,2000.PubMedGoogle Scholar
  174. 174.
    Watt, P. M., Louis, E. J., Borts, R. H., and Hickson, I. D. Sgsl: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation, Cell. 81: 253-260,1995.PubMedCrossRefGoogle Scholar
  175. 175.
    Gangloff, S., MacDonald, J. P., Bendixen, C., Arthur, L., and Rothstein, R. The yeast type 1 topoisomerase top3 interacts with sgsl, a DNA helicase homolog: a potential eukaryotic reverse gyrase, Mol. Cell. Biol. 14:8391-8398,1994.PubMedGoogle Scholar
  176. 176.
    Lu, J., Mullen, J. R., Brill, S. J., Kleff, S., Romeo, A. M., and Sternglanz, R. Human homologues of yeast helicase, Nature. 383:678-9,1996.PubMedCrossRefGoogle Scholar
  177. 177.
    Yamagata, K., Kato, J., Shimamoto, A., Goto, M., Furuichi, Y., and Ikeda, H. Bloom’s and Werner’s syndrome genes suppress hyperrecombination in yeast sgsl mutant: Implication for genomic instability in human diseases, Proc Natl Acad Sci USA. 95: 8733-8,1998.PubMedCrossRefGoogle Scholar
  178. 178.
    Lebel, M. and Leder, P. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of proliferative capacity, Proc. Natl. Acad. Sci. USA. 95:13097-13102,1998.PubMedCrossRefGoogle Scholar
  179. 179.
    Poot, M., Gollahon, K. A., and Rabinovitch, P. S. Werner syndrome lymphoblastoid cells are sensitive to camptothecin- induced apoptosis in S-phase, Hum Genet 104: 10-4,1999.PubMedCrossRefGoogle Scholar
  180. 180.
    Pichierri, P., Franchitto, A., Mosesso, P., and Palitti, F. Werner’s syndrome cell lines are hypersensitive to camptothecin-induced chromosomal damage, Mutat Res. 456: 45-57,2000.PubMedCrossRefGoogle Scholar
  181. 181.
    Imamura, O., Fujita, K., Itoh, C, Takeda, S., Furuichi, Y., and Matsumoto, T. Werner and Bloom helicases are involved in DNA repair in a complementary fashion, Oncogene. 21: 954-63., 2002.PubMedCrossRefGoogle Scholar
  182. 182.
    Sakamoto, S., Nishikawa, K., Heo, S. J., Goto, M., Furuichi, Y., and Shimamoto, A. Werner helicase relocates into nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51, Genes Cells. 6:421-30., 2001.PubMedCrossRefGoogle Scholar
  183. 183.
    Franchitto, A. and Pichierri, P. Bloom’s syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest, J Cell Biol. 157: 19-30., 2002.PubMedCrossRefGoogle Scholar
  184. 184.
    Li, B. and Comai, L. Functional interaction between Ku and the werner syndrome protein in DNA end processing, J Biol Chem. 275:39800., 2000.PubMedGoogle Scholar
  185. 185.
    Brosh, R. M, Jr. and Bohr, V. A. Roles of the Werner syndrome protein in pathways required for maintenance of genome stability, Exp Gerontol. 37:491-506., 2002.PubMedCrossRefGoogle Scholar
  186. 186.
    Sun, M, Duann, P., Lin, C. T., Zhang, H., and Liu, L. F. Rapid chromatin reorganization induced by topoisomerase I-mediated DNA damage, Ann N Y Acad Sci. 922: 340-2, 2000.PubMedCrossRefGoogle Scholar
  187. 187.
    Citterio, E., Van Den Boom, V., Schnitzler, G., Kanaar, R., Bonte, E., Kingston, R. E., Hoeijmakers, J. H., and Vermeulen, W. ATP-Dependent chromatin remodeling by the cockayne syndrome B DNA repair-transcription-coupling factor, Mol Cell Biol. 20: 7643-53,2000.PubMedCrossRefGoogle Scholar
  188. 188.
    Redon, C, Pilch, D., Rogakou, E., Sedelnikova, O., Newrock, K., and Bonner, W. Histone H2A variants H2AX and H2AZ, Curr Opin Genet Dev. 12:162-9., 2002.PubMedCrossRefGoogle Scholar
  189. 189.
    Furuta, T., Redon, C., Pilch, D„ Sedelnikova, O., Kohlhagen, G„ Kirchgessner, C. U., Kaufmann, S. H., Cliby, W. A., Bonner, W., and Pommier, Y. ATR- and DNA-PK-dependent phosphorylation of histone H2AX by replication-mediated DNA double-strand breaks induced by camptothecin, Proc Am Assoc Cancer Res. 43: 835,2002.Google Scholar
  190. 190.
    Slichenmyer, W. J., Nelson, W. G., Slebos, R. J., and Kastan, M. B. Loss of ap53-associated Gl checkpoint does not increase cell survival following DNA damage, Cancer Res. 53:4164-4168,1993.PubMedGoogle Scholar
  191. 191.
    Gupta, M, Fan, S., Zhan, Q., Kohn, K. W„ O’Connor, P. M, and Pommier, Y. Inactivation of p53 increases the cytotoxicity of camptothecin in human colon HCT116 and breast MCF-7 cancer cells, Clin Cancer Res. 3:1653-60,1997.PubMedGoogle Scholar
  192. 192.
    Canman, C. E., Wolff, A. C Chen, C.-H., Fornace, A. J., and Kastan, M. B. The p53-dependent cell cycle checkpoint pathway and Ataxia-Telangiectansia, Cancer Res. 54: 5054-5058,1994.PubMedGoogle Scholar
  193. 193.
    Saito, H., Grompe, M., Neeley, T. L., Jakobs, P. M, and Moses, R. E. Fanconi anemia cells have a normal gene structure for topoisomerase I, Hum Genet 93: 583-6., 1994.PubMedCrossRefGoogle Scholar
  194. 194.
    Poot, M. and Hoehn, H. DNA topoisomerases and the DNA lesion in human genetic instability syndromes, Toxicology Letters. 67:297-308,1993.PubMedCrossRefGoogle Scholar
  195. 195.
    Rosselli, F., Duchaud, E., Averbeck, D., and Moustacchi, E. Comparison of the effects of DNA topoisomerase inhibitors on lymphoblasts from normal and Fanconi anemia donors, Mutation Res. 325:137-144,1994.PubMedCrossRefGoogle Scholar
  196. 196.
    Taniguchi, T. and Dandrea, A. D. Molecular pathogenesis of fanconi anemia, Int J Hematol. 75: 123-8., 2002.PubMedCrossRefGoogle Scholar
  197. 197.
    Komatsu, K., Miyashita, T., Hang, H., Hopkins, K. M., Zheng, W., Cuddeback, S., Yamada, M., Lieberman, H. B., and Wang, H. G. Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis, Nat Cell Biol. 2:1-6., 2000.PubMedCrossRefGoogle Scholar
  198. 198.
    Komatsu, K., Hopkins, K. M., Lieberman, H. B., and Wang, H. Schizosaccharomyces pombe Rad9 contains a BH3-like region and interacts with the anti-apoptotic protein Bcl-2, FEBS Lett. 481: 122-6., 2000.PubMedCrossRefGoogle Scholar
  199. 199.
    Kharbanda, S., Ren, R., Pandey, P., Shafinan, T. D., Feller, S. M., Weichselbaum, R. R., and Kufe, D. W. Activation of the c-Abl tyrosine kinase in the stress response to DNA- damaging agents, Nature. 376: 785-8., 1995.PubMedCrossRefGoogle Scholar
  200. 200.
    Jin, S., Kharbanda, S., Mayer, B„ Kufe, D., and Weaver, D. T. Binding of Ku and c-Abl at the kinase homology region of DNA-dependent protein kinase catalytic subunit, J Biol Chem. 272: 24763-6., 1997.PubMedCrossRefGoogle Scholar
  201. 201.
    Baskaran, R., Wood, L. D., Whitaker, L. L., Canman, C. E., Morgan, S. E., Xu, Y., Barlow, C., Baltimore, D., Wynshaw-Boris, A., Kastan, M. B., and Wang, J. Y. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation, Nature. 387: 516-9., 1997.PubMedCrossRefGoogle Scholar
  202. 202.
    Shafinan, T., Khanna, K. K., Kedar, P., Spring, K., Kozlov, S., Yen, T., Hobson, K., Gatei, M., Zhang, N., Walters, D., Egerton, M., Shiloh, Y., Kharbanda, S., Kufe, D., and Lavin, M. F. Interaction between ATM protein and c-Abl in response to DNA damage, Nature. 387: 520-3., 1997.CrossRefGoogle Scholar
  203. 203.
    Yoshida, K., Komatsu, K., Wang, H. G., and Kufe, D. c-Abl Tyrosine Kinase Regulates the Human Rad9 Checkpoint Protein in Response to DNA Damage, Mol Cell Biol. 22:3292-300., 2002.PubMedCrossRefGoogle Scholar
  204. 204.
    Chen, G., Yuan, S. S., Liu, W„ Xu, Y., Trujillo, K., Song, B., Cong, F., Goff, S. P., Wu, Y., Arlinghaus, R., Baltimore, D., Gasser, P. J., Park, M. S., Sung, P., and Lee, E. Y. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl, J Biol Chem. 274:12748-52., 1999.PubMedCrossRefGoogle Scholar
  205. 205.
    Yuan, Z. M., Huang, Y., Ishiko, T., Nakada, S., Utsugisawa, T., Kharbanda, S., Wang, R., Sung, P., Shinohara, A., Weichselbaum, R., and Kufe, D. Regulation of Rad51 function by c-Abl in response to DNA damage, J Biol Chem. 273: 3799-802., 1998.PubMedCrossRefGoogle Scholar
  206. 206.
    Han, Z., Wei, W., Dunaway, S., Darnowski, J. W., Calabresi, P., Sedivy, J., Hendrickson, E. A., Balan, K. V., Pantazis, P., and Wyche, J. H. Role of p21 in Apoptosis and Senescence of Human Colon Cancer Cells Treated with Camptothecin, J. Biol. Chem. 277: 17154-17160, 2002.PubMedCrossRefGoogle Scholar
  207. 207.
    Walton, M. I., Whysong, D., O’Connor, P. M., Hockenbery, D„ Korsmeyer, S. J., and Kohn, K. W. Constitutive expression of human Bcl-2 modulates nitrogen mustard and camptothecin induced apoptosis, Cancer Res. 53:1853-61,1993.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Yves Pommier
    • 1
  • Juana Barceló
    • 1
  • Takahisa Furuta
    • 1
  • Haruyuki Takemura
    • 1
  • Olivier Sordet
    • 1
  1. 1.Laboratory of Molecular Pharmacology Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations