Enzyme activities Along the kynurenine pathway in mice

  • Allegri Graziella
  • Eugenio Ragazzi
  • Bertazzo Antonella
  • Carlo V. L. Costa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 527)


Tryptophan metabolism was studied in adult male Swiss mice by determining enzyme activities along the kynurenine pathway. The following enzymes were assayed: liver tryptophan 2,3-dioxygenase, small intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4-dioxygenase, and aminocarboxymuconatesemialdehyde decarboxylase. Liver tryptophan 2,3-dioxygenase was present only as a holoenzyme: similar results were obtained in the absence or in the presence of the cofactor haematin. The specific activity of small intestine indole 2,3-dioxygenase was higher than that of tryptophan 2,3-dioxygenase. As superoxide dismutase was very active in mouse intestine, this enzyme may be one of the rate controlling factors of the indole 2,3 dioxygenase activity. Kynurenine 3-monooxygenase appeared to be very active. Kidneys showed higher activity than liver. Instead, kynureninase was more active in liver, but activity was lower than that demonstrated by the other enzymes of the kynurenine pathway. Conversely, kynurenine-oxoglutarate transaminase was much more active in kidney than in liver. However, the most active enzyme along the kynurenine pathway was 3-hydroxyanthranilate 3,4-dioxygenase, with liver showing the highest activity; aminocarboxymuconate-semialdehyde decarboxylase, which showed similar values in both liver and kidney, showed activity markedly lower than 3hydroxyanthranilate 3,4-dioxygenase. Serum tryptophan appeared to be 87% bound to proteins. Results demonstrate that, in mouse, tryptophan is mainly metabolised along the kynurenine pathway. Therefore, mouse is a suitable animal model for studying tryptophan metabolism in the pathological field.


Quinolinic Acid Anthranilic Acid Kynurenic Acid Kynurenine Pathway Tryptophan Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Musajo and C.A. Benassi, Aspects of disorders of the kynurenine pathway of tryptophan metabolism in manAdv. Clin. Chem. 763–135 (1964).PubMedCrossRefGoogle Scholar
  2. 2.
    F.M. Chiancone, Enzymes of the tryptophan →a nicotinic acid pathway, in:Newer methods of nutritional biochemistryedited by A.A. Albanese, Vol. 2 (Academic Press, New York, 1965), pp. 249–284.Google Scholar
  3. 3.
    J.M. Price, R.R Brown, N. Yess, Testing the functional capacity of the tryptophan-niacin pathway in man by analysis of urinary metabolitesAdv. Metab. Disorders 2159–225 (1965).Google Scholar
  4. 4.
    H. Wolf, Studies on tryptophan metabolism in man, Scand.J. Clin. Lab. Invest.Suppl. No 136: 1-I86, 1974.PubMedGoogle Scholar
  5. 5.
    R. Schwarcz, F. Du, W. Schmidt, W.A. Turski, J.B. Gramsbergen, E. Okuno, R.C. Roberts, Kynurenic acid: a potential pathogen in brain disordersAnn. N.Y. Acad. Sci. 648140–153 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Schwarcz, Metabolism and function of brain kynureninesBiochem. Soc. Trans. 2177–82 (1993).PubMedGoogle Scholar
  7. 7.
    M.P. Heyes, Metabolism and neuropathologic significance of quinolinic acid and kynurenic acidBiochem. Soc.Trans. 2183–89 (1993).PubMedGoogle Scholar
  8. 8.
    F. Moroni, G. Lombardi, V. Carlà, G. Moneti, The excitotoxin quinolinic acid is present and unevenly distributed in the rat brainBrain Res. 295352–355 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    D.H. Munn, M. Zohu, J.T. Attwood, I. Bondarev, S.J. Conway, B. Marshall, C. Brown, A.l.. Mellor. Prevention of allogenic fetal rejection by tryptophan catabolismScience 2811191–1193 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    D.H. Munn, E. Shafizadeh, J.T. Attwood, I. Bondarev, A. Pashine, A.L. Mellor, Inhibition of T cell proliferation by macrophage tryptophan catabolismJ. Exp. Med. 1891363–1372 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Hirata and O. Hayaishi, Studies on indoleamine 2,3-dioxygenase. I Superoxide anion as substrate.J. Biol. Chem. 2505960–5966 (1975).PubMedGoogle Scholar
  12. 12.
    T. Ohnishi. F. Hirata, O. Hayaishi, Indoleamine 2,3-dioxygenase. Potassium superoxide as substrate.J. Biol. Chem. 2524643–4647 (1977).PubMedGoogle Scholar
  13. 13.
    W.E. Knox and V.H. Auerback, The hormonal control of tryptophan peroxidase in the ratJ. Biol. Chem. 214307–313 (1955).PubMedGoogle Scholar
  14. 14.
    W.E. Knox, The regulation of tryptophan pyrrolase activity by tryptophanAdv. Enzyme Regul.4, 287–297 (1966).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Altman and O. Greengard, Correlation of kynurenine excretion with liver tryptophan pyrrolase levels in disease and after hydrocortisone inductionJ. Clin. Invest. 451527–1534 (1966).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Watanabe, M. Fujiwara, R. Yoshida, O. Hayaishi, Stereospecificity of hepatic L-tryptophan 2,3dioxygenaseBiochem. J. 189393–405 (1980).PubMedGoogle Scholar
  17. 17.
    C.B. Monroe, Induction of tryptophan oxigenase and tyrosine aminotransferasein mice Am. J. Physiol. 2141410–1414 (1968).PubMedGoogle Scholar
  18. 18.
    J. Hvitfelt and R.S. Santti, Tryptophan pyrrolase in the liver of guinea pig: The absence of hydrocortisone inductionBiochim. Biophys. Acta 258358–365 (1972).CrossRefGoogle Scholar
  19. 19.
    A. A-B. Badawy and M. Evans, Guinea-pig liver tryptophan pyrrolase. Absence of detectable apoenzyme activity and of hormonal induction by cortisol and possible regulation by tryptophanBiochem. J. 138445–451 (1974).PubMedGoogle Scholar
  20. 20.
    J.N. Brown and C.L. Dodgen, Fish liver tryptophan pyrrolase: The apparent absence of both hormonal and substrate inductionBiochim. Biophys. Acta 165463–469 (1968).CrossRefGoogle Scholar
  21. 21.
    R.J. Johnson and L.A. Dyer, Effect of orally administered tryptophan on tryptophan pyrrolase activity in ovine and bovineLife Sci. 51121–1124 (1966).PubMedCrossRefGoogle Scholar
  22. 22.
    K.L. Baughman and J.M. Franz, Control of tryptophan oxygenase and formamidase activity in the gerbilInt. J. Biochem.2, 201–211 (1971).CrossRefGoogle Scholar
  23. 23.
    M. Spiegel, Tryptophan pyrrolase activity in the liver of adultrana pipiens Biol. Bull.121, 547–553 (1961).CrossRefGoogle Scholar
  24. 24.
    J.E. Leklem, J. Woodford and R.R. Brown, Comparative tryptophan metabolism in cats and ratsComp Biochem. Physiol. 3195–109 (1969).PubMedCrossRefGoogle Scholar
  25. 25.
    A. A-B. Badawy and M. Evans, Animal liver tryptophan pyrrolases. Absence of apoenzyme and of hormonal induction mechanism from species sensitive to tryptophan toxicityBiochem. J. 15879–88 (1976).PubMedGoogle Scholar
  26. 26.
    O. Takikawa, R. Yoshida, R. Kido, and O. Hayaishi, Tryptophan degradation in mice initiated by indoleamine-2,3-dioxygenaseJ. Biol. Chem. 2613648–3653 (1986).PubMedGoogle Scholar
  27. 27.
    R. Yoshida, T. Nukiwa, Y. Watanabe, M. Fujiwara, F. Hirata, O. Hayaishi, Regulation of indoleamine 2,3dioxygenase activity in the small intestine and the epididymis of miceArch. Biochem. Biophys.203, 343–351 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    R. Yoshida, J. Imanishi, T. Oku, T. Kishida, O. Hayaishi, Induction of pulmonary indoleamine 2,3dioxygenase by interferonProc. Natl. Acad. Sci. USA 78129–132 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Yoshida, T. Oku J. Imanishi, T. Kishida, O. Hayaishi, Interferon: a mediator of indoleamine 2,3dioxygenase induction by lipopolysaccharide, poly(1) poly(C) and pokeweed mitogen in House lungArch. Biochem. Biophys. 249596–604 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    R. Yoshida, and O. Hayaishi, Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharideProc. Natl. Acad. Sci. USA 753998–4000 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    R. Yoshida, Y. Urade, K. Nakata, Y. Watanabe, O. Hayaishi, Specific induction of indoleamine 2,3dioxygenase by bacterial lipolysaccharide in the mouse lungArch. Biochem. Biophys.212, 629–637 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Yoshida, Y. Urade, M. Tokuda, and O. Hayaishi, Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infectionProc. Natl. Acad. Sci. USA 764084–4086 (1979).PubMedCrossRefGoogle Scholar
  33. 33.
    F.T. DeCastro, J.M. Price, and R.R. Brown, Reduced triphosphopyridine-nucleotide requirement for the enzymatic formation of 3-hydroxykynurenine from L-kynurenineJ Am. Chem. Soc. 782904–2905 (1956).CrossRefGoogle Scholar
  34. 34.
    M. Mason, C.P. Berg, Metabolism of D- and L-tryptophan and D- and L-kynurenine by liver and kidney preparationsJ. Biol. Chem. 195515–524 (1952).PubMedGoogle Scholar
  35. 35.
    O. Wiss, Der enzymatische Abbau des Kynurenins in tierischen OrganismusHoppe-Seyler’s Z. Physiol. Chem. 293106–121 (1953).CrossRefGoogle Scholar
  36. 36.
    A.E. Braunstein, E.V. Goryochenkova, T.S. Paskhinaja, Enzymatic formation of alanine from L-kynurenine and L-tryptophan, the role of vitamin B6 in this processBiokhimya 14163–179 (1949).Google Scholar
  37. 37.
    Y. Kotake and Y.M. Nakayama, Über die Anthranilsäurebildung aus Kynurenin durch OrgansaftHoppeSeyler’s Z. Physiol. Chem. 27076–83 (1941).Google Scholar
  38. 38.
    O. Wiss, and H. Fuchs, Über den Abbau von Kynurenin, Oxykynurenin und verwandten Substanzen durch RattenleberenzymExperiencia(Basel)6472–473 (1950).CrossRefGoogle Scholar
  39. 39.
    Y. Nishizuka, A. Ichiyama, R.K. Gholson, O. Hayaishi, Studies on the metabolism of the benzene ring of tryptophan in mammalian tissues I. Enzymatic formation of glutaric acid from 3-hydroxyanthranilic acidJ. Biol. Chem. 240733–739 (1965).PubMedGoogle Scholar
  40. 40.
    A.H. Bokman, B.S. Schweigert, 3-Hydroxyanthranilic acid metabolism IV. Spectrophotometric evidence for the formation of an intermediateArch. Biochem. 33270–273 (1951).PubMedCrossRefGoogle Scholar
  41. 41.
    O. Wiss, Die oxidative Spaltung der 3-OxyanthranilsäureZ. Naturforsch. 9B740–741 (1954).Google Scholar
  42. 42.
    A. Ichiyama, S. Nakamura, H. Kawai, T. Honjo, Y. Nishizuka, O. Hayaishi, S. Senoh, Studies on the metabolism of the benzene ring of tryptophan in mammalian tissues II. Enzymatic formation of a-aminomuconic acid from 3-hydroxyanthranilic acidJ. Biol. Chem. 240740–749 (1965).PubMedGoogle Scholar
  43. 43.
    A.H. Mehler, E.L. May, Studies with carboxyl-labelled 3-hydroxyanthranilic and picolinic acid in vivo and in vitroJ. Biol. Chem. 223449–455 (1956).PubMedGoogle Scholar
  44. 44.
    L.M. Henderson, B.B. Ramasarma, B.C. Johnson, Quinolinic metabolism IV. Urinary excretion by man and other mammals as affected by the ingestion of tryptophanJ. Biol. Chem. 181731–738 (1949).PubMedGoogle Scholar
  45. 45.
    P. Feigelson and O. Greengard, A microsomal iron-porphyrin activator of rat liver tryptophan pyrrolaseJ. Biol. Chem. 236153–157 (1961).PubMedGoogle Scholar
  46. 46.
    G. Allegri, C. Costa, A. De Antoni, F. Baccichetti, S. Vanzan, Effect of psoralen-induced photodermatitis on tryptophan metabolism in guinea pigsII Farmaco Ed. Sci. 36557–564 (1981).Google Scholar
  47. 47.
    T. Shimizu, S. Nomiyama, F. Hirata and O. I-layaishi, Indoleamine 2,3-dioxygenase. Purification and sonic propertiesJ. Biol. Chem. 2534700–4706 (1978).PubMedGoogle Scholar
  48. 48.
    M.R. Mawal and D.R. Deshmukh, a-Aminoadipate aminotransferase and kynurenine aminotransferase activities from rat kidney. Evidence for separate identityJ. Biol. Chem. 2662573–2575 (1991).PubMedGoogle Scholar
  49. 49.
    O. Hayaishi, Kynurenine hydroxylaseMethods En_vmol . 5807–809 (1962).CrossRefGoogle Scholar
  50. 50.
    A. Saran, Properties and partial purification of kynureninaseBiochein J. 70182–188 (1958).Google Scholar
  51. 51.
    A. Bertazzo, E. Ragazzi, M. Biasiolo, C.V.L. Costa, G. Allegri, Enzyme activities involved in tryptophan metabolism along the kynurenine pathway in rabbitsBiochim. Biophys. Acta1527, 167–175 (2001)PubMedCrossRefGoogle Scholar
  52. 52.
    M. Mason, The kynurenine transaminase of rat kidneyJ. Biol. Chem.211, 839–844 (1954).PubMedGoogle Scholar
  53. 53.
    A.H. Mehler, Formation of picolinic and quinolinic acids following enzymatic oxidation of 3hydroxyanthranilic acidJ. Biol.Chem. 218241–254 (1956).PubMedGoogle Scholar
  54. 54.
    W.A. Koontz, R. Shiman, Beef kidney 3-hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assayJ. Biol. Chem. 251368–377 (1976).PubMedGoogle Scholar
  55. 55.
    C. Beauchamp, I. Fridovich, Superoxide dismutase: Improved assays and an assay applicable to acrylamide gelsAnal. Biochem. 44276–287 (1971).PubMedCrossRefGoogle Scholar
  56. 56.
    O.H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein measurement with the Folin phenol reagentJ. Biol. Chem. 193265–275 (1951).PubMedGoogle Scholar
  57. 57.
    A. De Antoni, G. Allegri, C. Costa, S. Vanzan, A. Bertolin, N. Carretti, V. Zanardo, Total and free tryptophan levels in serum of newborn infants. Relationships with serotonin and nicotinic acid pathwaysActa Vitaminol. Enzymol. 217–20 (1980).PubMedGoogle Scholar
  58. 58.
    W.D. Denckla and H.H. Dewey, The determination of tryptophan in plasma, liver, and urineJ. Lab. Clin. Med. 69160–169 (1967).PubMedGoogle Scholar
  59. 59.
    G.E. Werner-Felmayer, E.R. Wemer, D. Fuchs, A. Hansen, G. Reibnegger, H. Wachter, Characteristics of interferon induced tryptophan metabolism in human cells in vitroBiochim. Biophys. Acta 1012140–147 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    J.M. Carlin, E.C. Borden, P.M. Sondel, G.I. Byrne, Interferon-induced indoleamine 2,3-dioxygenase activity in human mononuclear phagocytesJ. Leukocyte Biol. 4529–34 (1989).PubMedGoogle Scholar
  61. 61.
    A. De Antoni, N. Carretti, C. Costa, N. D’Antona. A. Bertolin, G. Allegri, Serum total andfreetryptophan concentration in mothers at delivery and in their newborn babiesGiorn. It. Chita. Clin. 5 .71–77 (1980).Google Scholar
  62. 62.
    H. Schrocksnadel, G. Baier-Bitterlich, O. Dapunt, H. Wachter, D. Fuchs, Decreased plasma tryptophan in pregnancyObstet. Gynecol. 8847–50 (1996).PubMedCrossRefGoogle Scholar
  63. 63.
    Y. Suzuki, M.A. Orellana, R.D. Schreiber, I.S. Remington, Interferon-y: the major mediator of resistance againstToxoplasma gondii Science 240516–518 (1988).PubMedCrossRefGoogle Scholar
  64. 64.
    E.R. Pfefferkorn, Interferon blocks the growth ofToxoplasma gondiiin human fibroblast by inducing the host cells to degrade tryptophanProc. Natl. Acad. Sci. USA 81908–912 (1984).PubMedCrossRefGoogle Scholar
  65. 65.
    G.I. Byrne, L.K. Lehmann, G.J. Landry, Induction of tryptophan catabolism is the mechanism for gammainterferon-mediated inhibition of intracellularChlamydia psiltacireplication in “124 cellsInfect. Immun. 53347–351 (1986).PubMedGoogle Scholar
  66. 66.
    J.M. Carlin, E.C. Borden, P.M. Sondel, G.I. Byrne, Biologic response modifier-induced indoleamine 2,3dioxygenase activity in human peripheral blood mononuclear cell culturesJ. Immunol. 1392414–2418 (1987).PubMedGoogle Scholar
  67. 67.
    A. Habara-Ohkubo, T. Shirahata, O. Takikawa, R. Yoshida, Estabishment of an antitoxoplasma state by stable expression of mouse indoleamine 2,3-dioxygenaseInfect. Immun. 611810–1813 (1993).PubMedGoogle Scholar
  68. 68.
    T.M. Aune, S.-L. Pogue, Inhibition of tumor cell growth by interferon-y is mediated by two distinct mechanisms dependent upon oxygen tension: induction of tryptophan degradation and depletion of intracellular nicotinamide adenine dinucleotideJ. Clin. Invest. 84863–875 (1989).PubMedCrossRefGoogle Scholar
  69. 69.
    R. Yoshida, O. Takikawa, H. Yasui, O. Hayaishi, and K. Yasuhira, Role of indoleamine 2,3-dioxygenase in the defence mechanism against tumor growth, in:Progress in Tryptophan and Serotonin Researchedited by W. de Gruyter (Plenum Press, New York, 1984), pp. 513–516.Google Scholar
  70. 70.
    S. Fujigaki, K. Saito, M. Takemura, H. Fujii, H. Wada, A. Noma, M. Seishima, Species differences in Ltryptophan-kynurenine pathway metabolism. Quantification of anthranilic acid and its related enzymesArch. Biochem. Biophys. 358329–335 (1998).PubMedCrossRefGoogle Scholar
  71. 71.
    A. De Antoni, C. Costa, F. Baccichetti, E.L. Cardin de Stefani, S. Vanzan, G. Allegri, Enzyme activities and metabolites along the kynurenine pathway in mice with Harding-Passey melanomaActa Vitaminol. Enzymol. 583–87 (1983).PubMedGoogle Scholar
  72. 72.
    C. Costa, A. De Antoni, F. Baccichetti, M. Biasiolo, G. Allegri, Metabolites and enzyme activities involved in tryptophan metabolism in two different strains of mouseIt. J. Biochem. 33319–324 (1984).Google Scholar
  73. 73.
    D.A. Bender and G.M. McCreanor, The preferred route of kynurenine metabolism in the ratBiochim. Biophys. Acta 71756–60 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Allegri Graziella
    • 1
  • Eugenio Ragazzi
    • 2
  • Bertazzo Antonella
    • 1
  • Carlo V. L. Costa
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of PadovaPadovaItaly
  2. 2.Department of Pharmacology and AnaesthesiologyUniversity of PadovaPadovaItaly

Personalised recommendations