Skip to main content

Quinolinic Acid Up-Regulates Chemokine Production and Chemokine Receptor Expression in Astrocytes

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 527))

Abstract

Within the brain, quinolinic acid (QUIN) is an important neurotoxin, especially in AIDS dementia complex (ADC). Its production by monocytic lineage cells is increased in the context of inflammation. However, it is not known whether QUIN promotes inflammation. Astrocytes are important in immuno-regulation within the brain and so we chose to examine the effects of QUIN on the astrocyte. Using purified cultures of primary human foetal astrocyte, we determined chemokine production using ELISA assays and RT-PCR, and chemokine receptor expression using immunocytochemistry and RT-PCR with QUIN in comparison to TNF-a/IFN-y. We found that QUIN induces astrocytes to produce large quantities of MCP-1 (CCL2), and lesser amounts of RANTES (CCL5), IL-8 (CXCL8). QUIN also increases SDF-la (CXCL12), HuMIG (CXCL9) and fractalkine (CX3CL1) mRNA expression. Moreover, QUIN leads to up-regulation of the chemokine receptor expression of CXCR4, CCR5, and CCR3 in human foetal astrocytes. Most of these effects were comparable to those induced by TNF-a/IFN-y. The present work represents the first evidence that QUIN induces chemokine and chemokine receptor expression in astrocytes and is at least as potent as classical mediators such as inflammatory cytokines. These results suggest that QUIN may be critical in the amplification of brain inflammation particularly in ADC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.W. Stone, Endogenous neurotoxins from tryptophanToxicon39, 61–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. P. Conti, R.C. Barbacane, M. Reale, Chemokines in inflammatory statesAllergy Asthma Proc.20, 205–208 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. R.S. Ghirnikar, Y.L. Lee, L.F Eng„ Inflammation in traumatic brain injury: role of cytokines and chemokinesNeurochem. Res.23, 329–340 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. B.A. Premack, T.J. Schall, Chemokine receptors: gateways to inflammation and infectionNature Medecine2, 1174–1178 (1996).

    Article  CAS  Google Scholar 

  5. M. Baggiolini, Chemokines and leukocyte trafficNature392, 565–568 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. F. Balkwill, The molecular and cellular biology of the chemokinesJ. Viral Nepal. 5, I-14 (1998).

    Google Scholar 

  7. P.M. Murphy, M. Baggiolini, I.F. Charo, C.A. Hebert, R. Horuk, K. Matsushima, L.H. Miller, J.J. Oppenheim, C.A. Power, International union of pharmacology. XXII. Nomenclature for chemokine receptorsPharmacol. Rev.52, 145–176 (2000).

    PubMed  CAS  Google Scholar 

  8. J.M. Weiss, S.A. Downie, W.D. Lyman, J.W Berman,. Astrocyte-derived monocyte-chemoattractant protein-I directs the transmigration of leukocytes across a model of the human blood-brain barrierJ. Immunol.161, 6896–6903 (1998).

    PubMed  CAS  Google Scholar 

  9. P. Bezzi, M. Domercq, L. Brambilla, R. Galli, D. Schols, E. De Clercq, A. Vescovi, G. Bagetta, G. Kollias, J. Meldolesi, A. Volterra, CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicityNat. Neurosci.4, 702–710. (2001).

    Article  PubMed  CAS  Google Scholar 

  10. M. Cota, A. Kleinschmidt, F. Ceccherini-Silberstein, F. Aloisi, M. Mengozzi, A. Mantovani, R. Brack-Werner, G. Poli, Upregulated expression of interleukin-8, RANTES and chemokine receptors in human astrocytic cells infected with HIV-1J. Neurovirol.6, 75–83 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. J. Croitoru-Lamoury, G. Guillemin, F.D. Boussin, B. Mognetti, S. Lebel-Binay, T. Leveque, G. Gras, R. Le Grand, D. Dormont, Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNF-a and IFN-g in CXCR4 and CCRS modulationGliain press. (2002).

    Google Scholar 

  12. J.W. Oh, L.M. Schwiebert, E.N. Benveniste, Cytokine regulation of CC and CXC chemokine expression by human astrocytesJ. Neurovirol.5, 82–94 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. P. Rezaie, G. Trillo-Pazos, I.P. Everall, D.K. Male, Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures: potential role of chemokines in the developing CNSGlia37, 64–75 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. V.C. Asensio, I.L. Campbell, Chemokines in the CNS: plurifunctional mediators in diverse statesTrends Neurosci.22, 504–512 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. A.R. Glabinski, R.M. Ransohoff, Chemokines and chemokine receptors in CNS pathology.J. Neurovirol.5, 3–12 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. A.E.I. Proudfoot, Chemokine receptors: multifaceted therapeutic targetsNat. Rev. Immunol.2, 106–115 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. B. Moser, Chemokines and HIV: a remarkable synergismTrends in Microbiology5, 88–90 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. A. Boutet, H. Salim, Y. Taoutik, P.M. Lledo, J.D. Vincent, J.F. Delfraissy, M. Tardieu, Isolated human astrocytes are not susceptible to infection by M- and T-tropic HIV-I strains despite functional expression of the chemokine receptors CCR5 and CXCR4Glia34, 165–177. (2001).

    Article  PubMed  CAS  Google Scholar 

  19. D. Gabuzda, J. Wang, Chemokine receptors and virus entry in the central nervous system.J. Neurovirol.5, 643–658 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. J. Hesselgesser, R. Horuk, Chemokine and chemokine receptor expression in the central nervous systemJ. Neurovirol.5, 13–26 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. A.V. Andjelkovic, D. Kerkovich, J. Shanley, L. Pulliam, J.S. Pachter, Expression of binding sites for beta chemokines on human astrocytesGlia28, 225–235 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. M.E. Dorf, M.A. Berman, S. Tanabe, M. Heesen, Y Luo,. Astrocytes express functional chemokine receptorsJ. Neuroimmunol.111, 109–121. (2000).

    Article  PubMed  CAS  Google Scholar 

  23. R.S. Klein, K.C. Williams, X. Alvarez-Hernandez, S. Westmoreland, T. Force, A.A. Lackner, A.D. Luster, Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of AIDSJ. Immunol.163, 1636–1646 (1999).

    PubMed  CAS  Google Scholar 

  24. F. Sabri, E. Tresoldi, M. Di Stefano, S. Polo, M.C. Monaco, A. Verani, J.R. Fiore, P. Lusso, E. Major, F. Chiodi, G. Scarlatti, Nonproductive human immunodeficiency virus type I infection of human fetal astrocytes: independence from CD4 and major chemokine receptorsVirology264, 370–384 (1999)

    Article  PubMed  CAS  Google Scholar 

  25. R.R. Brown, Y. Ozaki, S.P. Datta, E.C. Borden, P.M. Sondel, D.G. Malone, Implications of interferon-induced tryptophan catabolism in cancer, auto-immune diseases and AIDSAdv. Exp. Med. Biol. 294, 425­-435 (1991).

    Article  PubMed  Google Scholar 

  26. J.M. Carlin, Y. Ozaki, G.I. Byrne, R.R. Brown, E.C. Borden, Interferons and indoleamine 2,3-dioxygenase: role in antimicrobial and antitumor effectsExperientia45, 535–541 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. G. Melillo, G.W. Cox, A. Biragyn, L.A. Sheffler, L. Varesio, Regulation of nitric-oxide synthase mRNA expression by interferon-gamma and picolinic acidJ. Biol. Chem.269, 8128–8133 (1994).

    PubMed  CAS  Google Scholar 

  28. Y. Ozaki, M.P. Edelstein, D.S. Duch, Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon gammaProc. Natl. Acad. Sci. U. S. A.85, 1242–1246 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Kudo, C.A. Boyd, Human placental indoleamine 2,3-dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejectionBiochim. Biophys. Acta1500, 119–124 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. T. Nicholls, B. Lacey, I. Nitsos, G. Smythe, D.W. Walker, Regional changes in kynurenic acid, quinolinic acid, and glial tibrillary acidic protein concentrations in the fetal sheep brain after experimentally induced placental insufficiencyAm. J Obstet. Gynecol.184, 203–208 (2001).

    Article  CAS  Google Scholar 

  31. G. Melillo, G.W. Cox, D. Radzioch, L. Varesio, Picolinic acid, a catabolite of L-tryptophan, is a costimulus for the induction of reactive nitrogen intermediate production in murine macrophagesJ. Immunol.150, 4031–4040 (1993).

    PubMed  CAS  Google Scholar 

  32. M.C. Bosco, A. Rapisarda, S. Massazza, G. Melillo, H. Young, L. Varesio, The tryptophan catabolite picolinic acid selectively induces the chemokines macrophage inflammatory protein-1 alpha and -lbeta in macrophages [In Process Citation].J. Immunol.164, 3283–3291 (2000).

    PubMed  CAS  Google Scholar 

  33. B.J. Brew, L. Pemberton, L. Evans, M. Heyes, Quinolinic acid production by macrophages infected with demented and non-demented isolates of HIVClin. Neuropathol.12, SI (1993).

    Google Scholar 

  34. M.P. Heyes, B.J. Brew, A. Martin, R.W. Price, A.M. Salazar, J.J. Sidtis, J.A. Yergey, M.M. Mouradian, A.E. Salder, J. Keilp, D. Rubinow, S.P. Markey, Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological statusAnn. Neurol.29, 202–209 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. B.J. Brew, L. Pemberton, P. Cunningham, M.G. Law, Levels of human immunodeficiency virus type I RNA in cerebrospinal fluid correlate with AIDS dementia stageJ. Infect. Dis.175, 963–966 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. M.G. Espey, O.N. Chernyshev,I.I. Reinhard, M.A. Namboodiri, C.A. Colton, Activated human microglia produce the excitotoxin quinolinic acidNeuroreport8, 431–434 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. G.J. Guillemin, S.J. Kerr:, G.A. Smythe, D.G. Smith, V. Kapoor, P.J. Armati, J. Croitoru, B.J. Brew, Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protectionJ. Neurochem.781–13 (2001).

    Article  Google Scholar 

  38. J. Croitoru, G. Guillemin, F.D. Boussin, B. Mognetti, S. Lebel-Binay, T. Leveque, G. Gras, R. Le Grand, D. Dormont, Chemokines and chemokine receptors expression in simian astrocytesSSA Tray. Scient.20, 141–142 (1999).

    Google Scholar 

  39. A.V. Andjelkovic, D. Kerkovich, J.S. Pachter, Monocyte:astrocyte interactions regulate MCP-1 expression in both cell typesJ. Leukoc. Biol.68, 545–552 (2000).

    PubMed  CAS  Google Scholar 

  40. D.A. Barnes, M. Huston, R. Holmes, E.N. Benveniste, V.W. Yong, P. Scholz, H.D. Perez, Induction of RANTES expression by astrocytes and astrocytoma cell linesJ. Neuroimmunol.71, 207–214 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. H. Guo, Y.X. Jin, M. Ishikawa, Y.M. Huang, P.H. van der Meide, H. Link, B.G. Xiao, Regulation of beta­chemokine mRNA expression in adult rat astrocytes by lipopolysaccharide, proinflammatory and immunoregulatory cytokinesScand. J. Immunol.48, 502–508 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. N. Janabi, I. Hau, M. Tardieu, Negative Feedback Between Prostaglandin and alpha-and beta-Chemokine Synthesis in Human Microglial Cells and AstrocytesJ. Immunol.162, 1701–1706 (1999).

    PubMed  CAS  Google Scholar 

  43. P.K. Peterson, S. Hu, J. Salak-Johnson, T.W. Molitor, C.C. Chao, Differential production of and migratory response to beta chemokines by human microglia and astrocytesJ. Infect. Dis.175, 478–481 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. D. Sun, X. Hu, X. Liu, J.N. Whitaker, W.S. Walker, Expression of chemokine genes in rat glial cells: the effect of myelin basic protein-reactive encephalitogenic T cellsJ. Neurosci. Res.48, 192–200 (1997).

    Article  PubMed  CAS  Google Scholar 

  45. A.V. Andjelkovic, D.D. Spencer, J.S. Pachter, Visualization of chemokine binding sites on human brain microvesselsJ. Cell. Bio.145, 403–412 (I 999).

    Article  Google Scholar 

  46. R. Brack-Wemer, Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesisAids13, 1–22 (1999).

    Article  Google Scholar 

  47. .C.C. BIeuI, M. Farzan, H. Choe, C. Parolin, J. Clark-Lewis, I. Sodroski, T.A. Springer, The lymphocyte chemoattractant SDF-1 is a ligand for LESTER/fusin and blocks HIV-1 entryNature382, 829–832 (1996).

    Article  Google Scholar 

  48. J.M. Farber, Mig and IP-10: CXC chemokines that target lymphocytesJ. Leukoc. Biol.61, 246–257 (1997).

    PubMed  CAS  Google Scholar 

  49. D. Maciejewski-Lenoir, S. Chen, L. Feng, R. Maki, K.B. Bacon, Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microgliaJ. Immunol.163, 1628–1635 (1999).

    PubMed  CAS  Google Scholar 

  50. O. Meucci, A. Fatatis, A.A. Simen, R.J. Miller, Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survivalProc. Natl. Acad. Sci. U. S. A.97, 8075–8080 (2000).

    Article  PubMed  CAS  Google Scholar 

  51. S.A. Boehme, F.M. Lio, D. Maciejewski-Lenoir, K.B. Bacon, P.J. Conlon, The chemokine fractalkine inhibits Fas-mediated cell death of brain microgliaJ. Immunol.165, 397–403 (2000).

    PubMed  CAS  Google Scholar 

  52. A.V. Vallat, U. De Girolami, J. He, A. Mhashilkar, W. Marasco, B. Shi, F. Gray, J. Bell, C. Keohane, T.W. Smith, D. Gabuzda, Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDSAm. J. Pathol.152, 167–178 (1998).

    PubMed  CAS  Google Scholar 

  53. M.Q. Xia, S.X. Qin, L.J. Wu, C.R. Mackay, B.T. Hyman, Immunohistochemical study of the beta­chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains.Am. J. Pathol.153, 31–37 (1998).

    Article  PubMed  CAS  Google Scholar 

  54. L. Zhang, T. He, A. Talal, G. Wang, S.S. Frankel, D.D. Ho, In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5J. Virol.72, 5035–5045 (1998).

    PubMed  CAS  Google Scholar 

  55. M.P. Heyes, K.J. Swartz, S.P. Markey, M.F. Beal, Regional brain and cerebrospinal fluid quinolinic acid concentrations in Huntington’s diseaseNeurosci. Lett.122, 265–269 (1991).

    Article  PubMed  CAS  Google Scholar 

  56. Y.R. Zou, A.H. Kottmann, M. Kuroda, I. Taniuchi, D.R. Littman, Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar developmentNature393, 595–599 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. J.B. Rottman, K.P. Ganley, K. Williams, L. Wu, C.R. Mackay, D.J. Ringler, Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infectionAm. J. Pathol. 151, 1341­-1351 (1997).

    PubMed  Google Scholar 

  58. S.J. Kerr, P.J. Armati, L.A. Pemberton, G. Smythe, B. Tattam, B.J. Brew, Kynurenine pathway inhibition reduces toxicity of HIV-infected macrophagesNeurology49, 1671–1681 (1997).

    Article  PubMed  CAS  Google Scholar 

  59. S.J. Kerr, P.J. Armati, G.J. Guillemin, B.J. Brew, Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complexAIDS12, 355–363 (1998).

    Article  PubMed  CAS  Google Scholar 

  60. L.A. Pemberton, S.J. Kerr, B.J. Brew, HIV-1 gp120 does not induce quinolinic acid production by macrophages (Letter)J. NeuroVirol.3, 86–87 (1997).

    Article  PubMed  CAS  Google Scholar 

  61. D.G. Smith, G.J. Guillemin, L. Pemberton, S. Kerr, A. Nath, G.A. Smythe, B.J. Brew, Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and TatJ. Neurovirol.7, 56–60 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. J.T. Coyle, R. Schwartz, Mind glue: implications of glial cell biology for psychiatryArch. Gen. Psychiatry.57, 90–93 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. K.B. Bacon, J.K. Harrison, Chemokines and their receptors in neurobiology: perspectives in physiology and homeostasisJ. Neuroimmwtol.104, 92–97 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Croitoru-Lamoury, J., Guillemin, G.J., Dormont, D., Brew, B.J. (2003). Quinolinic Acid Up-Regulates Chemokine Production and Chemokine Receptor Expression in Astrocytes. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics