Skip to main content

The Influence of L - Tryptophan Peroral Load on Glomerular Filtration Rate in Chronic Glomerulonephritis and Chronic Renal Failure

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 527))

Abstract

The results of our clinical observations of 102 patients with chronic glomerulonephritis with normal renal function and 10 patients with chronic renal failure, as well as 10 healthy individuals allow us to conclude that in patients with high proteinuria and impaired renal function the serum concentration of tryptophan is decreased, both before and after peroral L ¡ª tryptophan load. We have found a positive correlation between serum concentration of albumin and tryptophan in patients with normal kidney function, and negative correlations between serum concentration of albumin and intensity of proteinuria, as well as between serum concentration of tryptophan and proteinuria.

Our studies have shown that L ¡ª tryptophan peroral load increases the glomerular filtration rate in healthy individuals, in patients with membronous proliferative glomerulonephritis with proteinuria < 2 g/24 h and mesangioproliferative glomerulonephritis with proteinuria < 2 g/24 h. In patients with high proteinuria (> 2 g/ 24h) and decreased renal function L ¡ª tryptophan load does not influence the glomerular filtration rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.R. Jacobson, S. Klahr, Chronic renal failure: Pathophysiology; ManagementLancet338, 419–423 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. H.G., Rennke, S. Anderson, B.M. Brenner, Structural and functional correlations in the progression of renal disease, in:Renal Pathologyedited by C.C. Tisher, B.M. Brenner (Lippincott, Philadelphia, 1989), pp. 43–46.

    Google Scholar 

  3. L.L. Woods, Mechanisms of renal hemodynamic regulation in response to protein feedingKidney Int. 44,659, (1993).

    Article  PubMed  CAS  Google Scholar 

  4. H. Nakamura, S. Ho, N. Ebe, M. Shibata, Renal effects of different types of proteins in healthy volunteers and diabetic patientsDiabetes Care 16, 1071 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. P. Kontessis, S. Jonis, R. Dodds et al., Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteinsKidney Int. 38, 136 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. R. Zatz, T.N. Meyer, H.G. Rennke, B.M. Brenner, Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic nephropathyProc. Natl. Acad. Sci. USA 82, 5963–5966 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. F. Sturz, G. Muller, On the progression of chronic renal diseaseNephron 69, 371–379 (1995).

    Article  Google Scholar 

  8. D. Tsiolakis, V. Marks, The differential effect of intragastric and intravenous tryptophan on plasma glucose, insulin, glucagon, GLI and GIP in fasted ratNorm. Metab. Res. 16, 226–229 (1984).

    Article  CAS  Google Scholar 

  9. E.A. Belongia, C.W. Hedberg, G.J. Gleich et al., An investigation of the cause of eosinophylic ¡ª myalgia syndrome associated with tryptophan useN. Engl. J. Med. 323, 357–360 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. J.R. Spies, D.C. Chambers, Chemical determination of tryptophan. Study of color formation of tryptophan, p-dimetihylaminobenzaldehide and sodium nitrate in sulfuric acid solutionsAnalytical Chem. 20, 30–39 (1948).

    Article  CAS  Google Scholar 

  11. E. WeberGrundriss der biologischen Statistik fur NaturwissenschaftlerLandwirte and Mediziner, (Gustav Fischer Verlag, Jena, 1957), pp. 344.

    Google Scholar 

  12. A.P. Green, J.K. Aronson, G. Curzon, H.F., Woods Metabolism of on orall tryptophan load: Effects of dose and pretreatment with tryptophanBrit. J. Clin. Pharmacol. 10, 603–610 (1980).

    Article  CAS  Google Scholar 

  13. .J. Fydryk, W. Szuba, O. Kurzawska, G. Zielazkowska, Tryptophan metabolism in children (in Polish)Pediatria Polska 8, 529–534 (1987).

    Google Scholar 

  14. G. Kurzawski, O. Kurzawska, W. Szuba, J. Fydryk, The binding of tryptophan to albumin in children with nephrotic syndrome (in Polish)Pediatr¨ªa Polska8, 535–539 (1987).

    Google Scholar 

  15. T.A. Fried, J.H. Stein, Glomerular dynamicsArch. Intern. Med.143, 787–791 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. C.L. Spannuth, L.L. Warnock, C. Wagner, N.J. Stone, Increased plasma clearance of pyrodoxal-5phosphate in vitamin B6deficient uremic man.J. Lab. Clin. Med.90, 632–637 (1977).

    PubMed  CAS  Google Scholar 

  17. S. Mizuirri, I. Hayashi, T. Ozawa, Effects of on oral protein load on glomerular filtration rite in healthy controls and nephrotic patientsNephron48, 101–106 (1988).

    Article  Google Scholar 

  18. A. De Torente, G.B. Glazer, P. Gulyassay, Reduced in vitro binding of tryptophan by plasma in uremiaKidney Int.4, 222–229 (1974).

    Article  Google Scholar 

  19. H. Dobblestein, W.F. Kormer, W. Mempel, H. Grosse-Wilde, VitaminB6deficiency in uremia and its implications for the depression of immune responses,Kidney Int.5, 233–239 (1974).

    Article  Google Scholar 

  20. E.W. Holmes, S.E. Kahn, Tryptophan distribution and metabolisms in experimental chronic renal insufficiencyExp. Mol. Pachol.46, 89–90 (1987).

    Article  CAS  Google Scholar 

  21. A.J. King, A.S Levey, Dietary protein and renal functionJ. Am. Soc.Nephrol.3, 1723 (1993).

    CAS  Google Scholar 

  22. A. Heller, C. Flombaum, M. Shils, I. Ginsburg, N. Alcoock, The effect of amino acid infusion on the glomerular filtration in ratsKidney Int.25, 167–172 (1984).

    Google Scholar 

  23. M. Brezis, P. Silva, F.H. Epstein, Amino acids induce renal vasodilatation in isolated perfused kidney: coupling to oxidative metabolismAm. J. Physiol.247, 999 (1984).

    Google Scholar 

  24. J. Johannsen, M. Lie, F. Kiil, Effect of glycine and glucagon on glomerular filtration and renal metabolic ratesAm. J. Physiol.233, 61–66 (1977).

    Google Scholar 

  25. M. Levy, Further observations on the response of the glomerular filtration rate of glucagon. Comparison with secretinCan. J. Physiol. Pharmacol.53, 81–86 (1975).

    Article  PubMed  CAS  Google Scholar 

  26. D.M. Rocha, G.R. Faloona, R.H. Unger, Glucagon-stimulating activity of 20 amino acids in dogs.J. Clin. Invest.51, 2346–2351 (1972).

    Article  PubMed  CAS  Google Scholar 

  27. A. Alvestrabd, J. Bergstrim, Glomerular hyperfiltration after protein ingestion during glucagon infusion, and in insulin-dependent diabetes is induced by a liver hormoneLancet195–197, (1987).

    Google Scholar 

  28. M. Dratwa, A. Burette, M. Van Gossum, No rise in glomerular filtration after protein loading in cirrhoticsKidney Int.32, 32–34 (1987).

    Google Scholar 

  29. R. Hirschberg, J.D. Kopple, Response of insulin - like growth factor I and renal hemodynamies to a high-and low-protein diet in the ratJ. Am. Soc. Nephrol.I, 1034–1038 (1991).

    Google Scholar 

  30. A.A. Jaffa, C.P. Vio, R.A. Silva, et al., Evidence for renal kinine as mediators of aminoacid-induced hyperperfussion and hyperfiltration in the ratJ. Clin. Invest.89, 1460–1464 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. T.F. Luscher, H.A. Bock, Z. Yang, D. Diederich, Endothelium - derived relaxing and contracting factors: prespectives in nephrologyKidney Int.39, 575–578 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. R.M. Edwards, W. Trizna, E.H. Ohlstein, Renal microvascular effects of endothelinAm. J. Physiol.259, 217–219 (1990).

    Google Scholar 

  33. C. Chen, K. Mitchell, L. Navar, Role of endothelium derived nitric oxide in the renal hemodynamic response to amino acvid infusionAm. J. Physiol.263, 510–516 (1992).

    Google Scholar 

  34. A. Piccoli, L. Calo, F. Modena, Prostaglandins and renal response to protein loading in normal and glomerulonephritic kidneysCurr. Theor. Res.49, 596–609 (1991).

    Google Scholar 

  35. P. Mundel, S. Bachmann, M. Bader, Expression of nitric oxide synthase in kidney macula densa cellsKidney Int.42, 1017–1019 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. S. Anderson, H.G. Rennke, D.L. Garcia, B.M. Brenner, Short and long-term effects of antihypertensive therapy in diabetic ratKidney Int.36, 526–529 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. J. Bosch, S. Lew, S. Glabman, Renal hemodynamic changes in humans. Response to protein loading in normal and diseased kidneysAm. J. Med.81, 809–815 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. P.M. Terwee, W. Goorlings, J.B. Rosman, W.J. Slaiter, Testing renal reserve filtration capacity with an amino acid solutionNephron41, 193–199 (1985).

    Article  CAS  Google Scholar 

  39. G. Maschio, N. Tessitore, B. Lund, et al., Long-term effects of dietary phosphate restriction in chronic renal failure, in:Uremia: pathobiology of patients treated 10 years or moreedited by C. Giordano, E.A. Friedman, (Milan, 1981), pp. 16–20.

    Google Scholar 

  40. W.E. Mitch, Conservative managment of chronic renal failure, in:Contemporary issues in nephrology. - V. 7. Chronic renal failureedited by B.M. Brenner, J.H. Stein, (New York, 1981), pp. 116–152.

    Google Scholar 

  41. K.D. Nath, Tubulointerstitial changes as a major determinant in the progresion of renal damageAm. J. Kidney Dis.20, 1–6 (1992).

    PubMed  CAS  Google Scholar 

  42. E. Alexopoulos, D. Seron, R.B. Hartley, J.S. Cameron, Lupus nephritis: correlation of interstitial cells with glomerular functionKidney Int.37, 100–105 (1990).

    Article  PubMed  CAS  Google Scholar 

  43. F. Sturz, V. Becker, A. Muller, Interstitielle Beteiligung bei GlomerulonephritenInternist37, 1143–1151 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinsons, A., Rudzite, V., Cernevskis, H., Mihailova, I., Smeltere, Z. (2003). The Influence of L - Tryptophan Peroral Load on Glomerular Filtration Rate in Chronic Glomerulonephritis and Chronic Renal Failure. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics