The Influence of L - Tryptophan Peroral Load on Glomerular Filtration Rate in Chronic Glomerulonephritis and Chronic Renal Failure

  • Agris Martinsons
  • Vera Rudzite
  • Harijis Cernevskis
  • Inese Mihailova
  • Zane Smeltere
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 527)


The results of our clinical observations of 102 patients with chronic glomerulonephritis with normal renal function and 10 patients with chronic renal failure, as well as 10 healthy individuals allow us to conclude that in patients with high proteinuria and impaired renal function the serum concentration of tryptophan is decreased, both before and after peroral L ¡ª tryptophan load. We have found a positive correlation between serum concentration of albumin and tryptophan in patients with normal kidney function, and negative correlations between serum concentration of albumin and intensity of proteinuria, as well as between serum concentration of tryptophan and proteinuria.

Our studies have shown that L ¡ª tryptophan peroral load increases the glomerular filtration rate in healthy individuals, in patients with membronous proliferative glomerulonephritis with proteinuria < 2 g/24 h and mesangioproliferative glomerulonephritis with proteinuria < 2 g/24 h. In patients with high proteinuria (> 2 g/ 24h) and decreased renal function L ¡ª tryptophan load does not influence the glomerular filtration rate.


Glomerular Filtration Rate Chronic Renal Failure Normal Renal Function Chronic Glomerulonephritis Membranoproliferative Glomerulonephritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.R. Jacobson, S. Klahr, Chronic renal failure: Pathophysiology; ManagementLancet338, 419–423 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    H.G., Rennke, S. Anderson, B.M. Brenner, Structural and functional correlations in the progression of renal disease, in:Renal Pathologyedited by C.C. Tisher, B.M. Brenner (Lippincott, Philadelphia, 1989), pp. 43–46.Google Scholar
  3. 3.
    L.L. Woods, Mechanisms of renal hemodynamic regulation in response to protein feedingKidney Int. 44,659, (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Nakamura, S. Ho, N. Ebe, M. Shibata, Renal effects of different types of proteins in healthy volunteers and diabetic patientsDiabetes Care 16, 1071 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Kontessis, S. Jonis, R. Dodds et al., Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteinsKidney Int. 38, 136 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Zatz, T.N. Meyer, H.G. Rennke, B.M. Brenner, Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic nephropathyProc. Natl. Acad. Sci. USA 82, 5963–5966 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    F. Sturz, G. Muller, On the progression of chronic renal diseaseNephron 69, 371–379 (1995).CrossRefGoogle Scholar
  8. 8.
    D. Tsiolakis, V. Marks, The differential effect of intragastric and intravenous tryptophan on plasma glucose, insulin, glucagon, GLI and GIP in fasted ratNorm. Metab. Res. 16, 226–229 (1984).CrossRefGoogle Scholar
  9. 9.
    E.A. Belongia, C.W. Hedberg, G.J. Gleich et al., An investigation of the cause of eosinophylic ¡ª myalgia syndrome associated with tryptophan useN. Engl. J. Med. 323, 357–360 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    J.R. Spies, D.C. Chambers, Chemical determination of tryptophan. Study of color formation of tryptophan, p-dimetihylaminobenzaldehide and sodium nitrate in sulfuric acid solutionsAnalytical Chem. 20, 30–39 (1948).CrossRefGoogle Scholar
  11. 11.
    E. WeberGrundriss der biologischen Statistik fur NaturwissenschaftlerLandwirte and Mediziner, (Gustav Fischer Verlag, Jena, 1957), pp. 344.Google Scholar
  12. 12.
    A.P. Green, J.K. Aronson, G. Curzon, H.F., Woods Metabolism of on orall tryptophan load: Effects of dose and pretreatment with tryptophanBrit. J. Clin. Pharmacol. 10, 603–610 (1980).CrossRefGoogle Scholar
  13. 13.
    .J. Fydryk, W. Szuba, O. Kurzawska, G. Zielazkowska, Tryptophan metabolism in children (in Polish)Pediatria Polska 8, 529–534 (1987).Google Scholar
  14. 14.
    G. Kurzawski, O. Kurzawska, W. Szuba, J. Fydryk, The binding of tryptophan to albumin in children with nephrotic syndrome (in Polish)Pediatr¨ªa Polska8, 535–539 (1987).Google Scholar
  15. 15.
    T.A. Fried, J.H. Stein, Glomerular dynamicsArch. Intern. Med.143, 787–791 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    C.L. Spannuth, L.L. Warnock, C. Wagner, N.J. Stone, Increased plasma clearance of pyrodoxal-5phosphate in vitamin B6deficient uremic man.J. Lab. Clin. Med.90, 632–637 (1977).PubMedGoogle Scholar
  17. 17.
    S. Mizuirri, I. Hayashi, T. Ozawa, Effects of on oral protein load on glomerular filtration rite in healthy controls and nephrotic patientsNephron48, 101–106 (1988).CrossRefGoogle Scholar
  18. 18.
    A. De Torente, G.B. Glazer, P. Gulyassay, Reduced in vitro binding of tryptophan by plasma in uremiaKidney Int.4, 222–229 (1974).CrossRefGoogle Scholar
  19. 19.
    H. Dobblestein, W.F. Kormer, W. Mempel, H. Grosse-Wilde, VitaminB6deficiency in uremia and its implications for the depression of immune responses,Kidney Int.5, 233–239 (1974).CrossRefGoogle Scholar
  20. 20.
    E.W. Holmes, S.E. Kahn, Tryptophan distribution and metabolisms in experimental chronic renal insufficiencyExp. Mol. Pachol.46, 89–90 (1987).CrossRefGoogle Scholar
  21. 21.
    A.J. King, A.S Levey, Dietary protein and renal functionJ. Am. Soc.Nephrol.3, 1723 (1993).Google Scholar
  22. 22.
    A. Heller, C. Flombaum, M. Shils, I. Ginsburg, N. Alcoock, The effect of amino acid infusion on the glomerular filtration in ratsKidney Int.25, 167–172 (1984).Google Scholar
  23. 23.
    M. Brezis, P. Silva, F.H. Epstein, Amino acids induce renal vasodilatation in isolated perfused kidney: coupling to oxidative metabolismAm. J. Physiol.247, 999 (1984).Google Scholar
  24. 24.
    J. Johannsen, M. Lie, F. Kiil, Effect of glycine and glucagon on glomerular filtration and renal metabolic ratesAm. J. Physiol.233, 61–66 (1977).Google Scholar
  25. 25.
    M. Levy, Further observations on the response of the glomerular filtration rate of glucagon. Comparison with secretinCan. J. Physiol. Pharmacol.53, 81–86 (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    D.M. Rocha, G.R. Faloona, R.H. Unger, Glucagon-stimulating activity of 20 amino acids in dogs.J. Clin. Invest.51, 2346–2351 (1972).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Alvestrabd, J. Bergstrim, Glomerular hyperfiltration after protein ingestion during glucagon infusion, and in insulin-dependent diabetes is induced by a liver hormoneLancet195–197, (1987).Google Scholar
  28. 28.
    M. Dratwa, A. Burette, M. Van Gossum, No rise in glomerular filtration after protein loading in cirrhoticsKidney Int.32, 32–34 (1987).Google Scholar
  29. 29.
    R. Hirschberg, J.D. Kopple, Response of insulin - like growth factor I and renal hemodynamies to a high-and low-protein diet in the ratJ. Am. Soc. Nephrol.I, 1034–1038 (1991).Google Scholar
  30. 30.
    A.A. Jaffa, C.P. Vio, R.A. Silva, et al., Evidence for renal kinine as mediators of aminoacid-induced hyperperfussion and hyperfiltration in the ratJ. Clin. Invest.89, 1460–1464 (1992).PubMedCrossRefGoogle Scholar
  31. 31.
    T.F. Luscher, H.A. Bock, Z. Yang, D. Diederich, Endothelium - derived relaxing and contracting factors: prespectives in nephrologyKidney Int.39, 575–578 (1991).PubMedCrossRefGoogle Scholar
  32. 32.
    R.M. Edwards, W. Trizna, E.H. Ohlstein, Renal microvascular effects of endothelinAm. J. Physiol.259, 217–219 (1990).Google Scholar
  33. 33.
    C. Chen, K. Mitchell, L. Navar, Role of endothelium derived nitric oxide in the renal hemodynamic response to amino acvid infusionAm. J. Physiol.263, 510–516 (1992).Google Scholar
  34. 34.
    A. Piccoli, L. Calo, F. Modena, Prostaglandins and renal response to protein loading in normal and glomerulonephritic kidneysCurr. Theor. Res.49, 596–609 (1991).Google Scholar
  35. 35.
    P. Mundel, S. Bachmann, M. Bader, Expression of nitric oxide synthase in kidney macula densa cellsKidney Int.42, 1017–1019 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    S. Anderson, H.G. Rennke, D.L. Garcia, B.M. Brenner, Short and long-term effects of antihypertensive therapy in diabetic ratKidney Int.36, 526–529 (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Bosch, S. Lew, S. Glabman, Renal hemodynamic changes in humans. Response to protein loading in normal and diseased kidneysAm. J. Med.81, 809–815 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    P.M. Terwee, W. Goorlings, J.B. Rosman, W.J. Slaiter, Testing renal reserve filtration capacity with an amino acid solutionNephron41, 193–199 (1985).CrossRefGoogle Scholar
  39. 39.
    G. Maschio, N. Tessitore, B. Lund, et al., Long-term effects of dietary phosphate restriction in chronic renal failure, in:Uremia: pathobiology of patients treated 10 years or moreedited by C. Giordano, E.A. Friedman, (Milan, 1981), pp. 16–20.Google Scholar
  40. 40.
    W.E. Mitch, Conservative managment of chronic renal failure, in:Contemporary issues in nephrology. - V. 7. Chronic renal failureedited by B.M. Brenner, J.H. Stein, (New York, 1981), pp. 116–152.Google Scholar
  41. 41.
    K.D. Nath, Tubulointerstitial changes as a major determinant in the progresion of renal damageAm. J. Kidney Dis.20, 1–6 (1992).PubMedGoogle Scholar
  42. 42.
    E. Alexopoulos, D. Seron, R.B. Hartley, J.S. Cameron, Lupus nephritis: correlation of interstitial cells with glomerular functionKidney Int.37, 100–105 (1990).PubMedCrossRefGoogle Scholar
  43. 43.
    F. Sturz, V. Becker, A. Muller, Interstitielle Beteiligung bei GlomerulonephritenInternist37, 1143–1151 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Agris Martinsons
    • 1
  • Vera Rudzite
  • Harijis Cernevskis
  • Inese Mihailova
  • Zane Smeltere
  1. 1.Latvia Medical AcademyRigaLatvia

Personalised recommendations