Plasma Leptin, Insulin And Free Tryptophan Contribute To Cytokine-Induced Anorexia

  • Tomoi Sato
  • Alessandro Laviano
  • MichaelM Meguid
  • FilippoRossi Fanelli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 527)

Abstract

Cytokines contribute to anorexia of diseases. Tumor Necrosis Factor (TNF) and/or interleukin-1 (IL-1) stimulate leptin release, but not insulin. Both affect hypothalamus to decrease food intake (FI). Hypothalamic serotonin (5HT) decreases FI. Its synthesis depends on brain availability of precursor, tryptophan (TRP), which depends on plasma free TRP. Purpose is to test involvement of plasma leptin, insulin, TRP, and thus hypothalamic 5HT in cytokine-induced anorexia in rats. In male rats, IL-1 a (10 mg/kg/d; n=9), TNFa (30 mg/kg/d; n=9), Il-la+TNFa (10:30 mg/kg/d; n=9), TRP (100 mg/kg/d, n=8) and saline (n=8; Control) were injected sc for 2 days. FI, BW, plasma free and total TRP, leptin and insulin, and body fat were measured. Data analyzed via ANOVA. IL-la and IL-la+TNFa vs others decreased FI and BW. TNFa and TRP did not change FI and BW. Plasma total TRP was higher in TRP vs IL-la, TNFa, and IL-la+TNFa. Plasma free TRP was higher in IL-la and IL- l a+TNFa vs Control. IL-la and IL- l a+TNFa decreased leptin and body fat. Insulin in Control was lower than others. Data suggest: i) IL-la increases plasma free TRP, but not total TRP, thus increases hypothalamic 5HT synthesis, resulting in anorexia; ii) leptin does not mediate anorexia, but; iii) insulin may contribute to anorexia induced by cytokines.

Keywords

Hydrolysis Albumin Dopamine Cage Serotonin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.
    C.R. Plata-Salaman, Anorexia during acute and chronic disease, Nutrition 12, 69–78 (1996).PubMedCrossRefGoogle Scholar
  2. 2.
    C.R. Plata-Salaman, Y. Oomura, Y. Kai, Tumor necrosis factor and interleukin-I beta: suppression of food intake by direct action in the central nervous system, Brain Res. 448, 106–114 (1998).CrossRefGoogle Scholar
  3. 3.
    A. Laviano, Ci Cangiano, A. Fava, M. Muscaritoli, G. Mulieri, F.R. Fanelli, Peripherally injected 1L-1 induces anorexia and increases brain tryptophan concentrations, Adv. Exp. Med. Biol.; 467, 105-I08 (1999).PubMedCrossRefGoogle Scholar
  4. 4.
    Z.J. Yang, V. Blaha, M.M. Meguid et al., Interleukin-la injection into ventromedial hypothalamic nucleus of normal rats depresses food intake and increases release of dopamine and serotonin, Pharmacol. Biochem. Behay. 62, 61–65 (1999).Google Scholar
  5. 5.
    F. Shintani, S. Kanba, T. Nakaki, M. Nibuya, N. Kinoshita, E. Suzuki, G. Yagi, R. Kato, M. Asai, Interleukin-I ß augments release of norepinephrine, dopamine, and serotoinn in the rat anterior hypothalamus, J. Neurosci., 13, 3574–3581 (1993).PubMedGoogle Scholar
  6. 6.
    S.F. Leibowitz, J.T. Alexander, Hypothalamic serotonin in control of eating behavior, meal size, and body weight, Biol. Psychiatry 44, 851–864 (1998).Google Scholar
  7. 7.
    J.D. Fernstrom, R.J. Wurtman, Brain serotonin content: physiological dependence on plasma tryptophan levels, Science 173, 149–152 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    J.D. Schaechter, R.J. Wurtman, Serotonin release varies with brain tryptophan levels, Brain Res. 532, 203–210 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    J.D. Fernstrom, R.J. Wurtman, Brain serotonin content: physiological regulation by plasma neutral amino acids, Science 178, 414–416 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Pérez-Cruet, T.N. Chase, D.L. Murphy, Dietary regulation of brain tryptophan metabolism by plasma ratio of free tryptophan and neutral amino acids in humans, Nature 248, 693–695 (1974).PubMedCrossRefGoogle Scholar
  11. I I.
    W.M. Pardridge, Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier, J. Neurochem. 28, 103–108 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    A.M. Landel, C.C. Lo, M.M. Meguid, Observations on predicted brain influx rates of neurotransmitter precursors: Effects of tumor, operative stress with tumor removal, and postoperative TPN of varying amino acid compositions, Cancer 59, 1 192–1200 (1987).Google Scholar
  13. 13.
    A.J. Dunn, Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin- I, J Pharmacol Exp Therap 261, 964–969 (1992).Google Scholar
  14. 14.
    L. Campfield, F. Smith, Y. Gulsez, R. Devos, P. Burn, Mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks, Science 269, 546–549 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    S.C. Woods, E.C. Lotter, L.D. McKay, D. Porte, Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons, Nature 282, 503–505 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake, Nature 404, 661–671 (2000).PubMedGoogle Scholar
  17. 17.
    S.C. Woods, R.J. Seeley, Adiposity signals and the control of energy homeostasis, Nutrition 16, 894–902 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Calapai, F. Corica, A. Corsonello, L. Sautebin, M. Di Rosa, G.M. Campo, M. Buemi, V.N. Mauro, A.P. Caputi, Leptin increases serotonin turnover by inhibition of brain nitric oxide synthesis, J. Clin. Invest. 104, 975–982 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Grunfeld, C. Zhao, J. Fuller, A. Pollock, A. Moser, J. Friedman, K.R. Feingold, Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters, J. Clin. Invest. 97, 2152–2157 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    W.D. Denckla, H.K. Dewey, The determination of tryptophan in plasma, liver and urine, J. Lab. Clin. Med. 69, 160–168 (1967).PubMedGoogle Scholar
  21. 21.
    D.L, Bloxam, W.H. Warren, Error in the determination of tryptophan by the method of Denckla and Dewey. A revised procedure, Anal. Biochem. 60, 621–625 (1967).CrossRefGoogle Scholar
  22. 22.
    C. Cangiano, A. Cascino, F. Ceci, A. Laviano, M. Mulieri, M. Muscaritoli, F. Rossi-Fanelli, Plasma and CSF tryptophan in cancer anorexia, J. Neural. Transm. 81, 225–233 (1990).CrossRefGoogle Scholar
  23. 23.
    A. Laviano, C. Cangiano, I. Preziosa, O. Riggio, L. Conversano, A. Cassino., S. Ariemma, F. Rossi Fanelli. Plasma tryptophan levels and anorexia in liver cirrhosis, Int. J. Eat Disord. 21, 181–186 (1987).Google Scholar
  24. 24.
    Aguilera A, Selgas R, Codoceo R, Bajo A. Uremic anorexia: a consequence of persistently high brain serotonin levels? The tryptophan/serotonin disorder hypothesis, Perit. Dial. Int. 20, 810–816 (2000).Google Scholar
  25. 25.
    M.M. Meguid, M. Muscaritoli, J.L. Beverly, Z.J. Yang, C. Cangiano, F. Rossi-Fanelli, The early cancer anorexia paradigm: changes in plasma free tryptophan and feeding indexes, J. Parent. Ent. Mar. 16, 56S–59S (1992).Google Scholar
  26. 26.
    A. Cascino, C. Cangiano, F. Ceci, F. Franchi, T. Mineo, M. Mulieri, M. Muscaritoli, F. Rossi-Fanelli, Increased plasma free typtophan levels in human cancer: a tumor related effect?, Anticancer Res. 11, 1313–1316 (1991).PubMedGoogle Scholar
  27. 27.
    A.-Laviano, C. Cangiano, F. Rossi Fanelli, Pathogenesis of cancer anorexia: personal perspective, Nutrition 13, 56–57 (1997).PubMedCrossRefGoogle Scholar
  28. 28.
    S.A. Bartholomew, S.A. Hoffman, Effects of peripheral cytokine injections on multiple units activity in the anterior hypothalamus of the mouse, Brain Behay. Immun. 7, 301–305 (1993).Google Scholar
  29. 29.
    W.S. Zawalich I, K.C. Zawalich, Interleukin 1 is a potent stimulator of islet insulin secretion and phosphoinositide hydrolysis, Am. J. Physiol. 256, E19–E24 (1989).PubMedGoogle Scholar
  30. 30.
    W.S. Zawalich, B. Dierolf, K.C. Zawalich, Inteleukin-1 induces time-dependent potentiation in isolated rat islets: possible involvement of phosphoinositide hydrolysis, Endocrinology 124, 720–726 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    J.D. Fernstrom, R.J. Wurtmen, Elevation of plasma tryptophan by insulin in rat, Metabolism 21. 337–342 (1972).PubMedCrossRefGoogle Scholar
  32. 32.
    D.E. Berkowitz, D. Brown, K. Min Lee, C. Emala, D. Palmer, Y. An, M. Breslow. Endotoxin-induced alteration in the expression of leptin and 33-adrenergic receptor in adipose tissue, Am. J. Physiol. 274, E992–E997 (1998).PubMedGoogle Scholar
  33. 33.
    S. Loffreda, S.Q. Yang, H.Z. Lin, C.L. Karp, M.L. Brengman, D.J. Wang, A.S. Klein, G.B. Bulkley, C. Bao, P.W. Noble, M.D. Lane, A.M, Diehl, Leptin regulates proinflammatory immune responses, FASEB J. 12, 57–65 (1998).PubMedGoogle Scholar
  34. 34.
    M. Barbier, C. Cherbut, A.C. Aube, H.M. Blottiere, J.P. Galmiche, Elevated plasma leptin concentrations in early stages of experimental intestinal inflammation in rats, Gut 43. 783–790 (1998).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Ballinger, P. Kelly, E. Hallyburton, R. Besser, M. Farthing, Plasma leptin in chronic inflammatory bowel disease and HIV: implications for the pathogenesis of anorexia and weight loss, Clin. Sci. (Colch) 94, 479483 (1998).Google Scholar
  36. 36.
    T. Sato, M.M. Meguid, G. Miyata, C. Chen, K. Hatakeyama, Does leptin really influence cancer anorexia?, Nutrition 18, 82–83 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Tomoi Sato
    • 1
  • Alessandro Laviano
    • 2
  • MichaelM Meguid
    • 3
  • FilippoRossi Fanelli
    • 4
  1. 1.Surgical Metabolism and Nutrition LaboratoryDepartment of Surgery, SUNY Upstate Medical UniversitySyracuse
  2. 2.Department of Clinical MedicineUniversity of Rome “La Sapienza”RomeItaly
  3. 3.Department of Clinical MedicineUniversity of Rome “La Sapienza”RomeItaly
  4. 4.Department of SurgeryNiigata University School of MedicineNiigataJapan

Personalised recommendations