Skip to main content

Kynurenine Metabolism in Central Nervous System in Experimental Chronic Renal Failure

  • Chapter
Developments in Tryptophan and Serotonin Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 527))

Abstract

Tryptophan metablolism via kynureninc pathway leads to the formation of several neuroactive substances including kynurenine, anthranilic acid and quinolinic acid, which are involved in numerous neurodegenerative diseases. Also chronic renal insufficiency is associated with neurological disturbances but it is still not clear which substances are responsible for those disorders. Thus, the aim of our study was to evaluate the concentration of tryptophan, kynurenine and anthranilic acid in plasma as well as in different brain regions in uremic rats. We have shown that tryptophan concentrations in plasma and in brain were decreased, whereas kynurenine and anthranilic acid levels were elevated, both in plasma and in central nervous system. Only in cerebellum and hippocampus were no difference in concentration of antranilic acid between control and uremic rats. Accumulation of tryptophan metabolites in nervous tissue may be involved in pathogenesis of several neurological disorders in uremia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.R. Shidler, R.A. Peterson, P.L. Kimmel, Quality of life and psychological relationships in patients with chronic renal insufficiencyAm.1. Kidney Dis.32, 557–566 (1998).

    Article  CAS  Google Scholar 

  2. B.F. Palmer, Sexual dysfunction in uremiaJ. Am. Soc. Nephrol.10 1381–1388 (1999)

    PubMed  CAS  Google Scholar 

  3. S.M. Moe, S.M. Sprague, Uremic encephalophatyClin. Nephrol.42, 251–256 (1994)

    PubMed  CAS  Google Scholar 

  4. H.E. Gin, Neurobehavioral dysfunction in uremiaKidney Int. Suppl.2 217–221 (1975)

    Google Scholar 

  5. J. Topczewska-Bruns, A. Tankiewicz, D. Pawlak, W. Buczko, Behavioral changes in the course of chronic renal insufficiency in rats.Pol. J. Pharmacol.53, 263–269 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. D.J. Bum, D. Bates, Neurology and the kidneyJ. Neurot. Neurosurg. Psychiatry65, 810–821 (1998).

    Article  Google Scholar 

  7. R. Vanholder, R. De Smet, Pathophysiologic effects of uremic retension solutesJ. Am. Soc. Nephrol. 101815–1823 (1999).

    PubMed  CAS  Google Scholar 

  8. T.W. Stone, J.H. Connick,. Neuropharmacology of quinolinic and kynurenic acids.Pharmacol. Rev.45, 309–379 (1993)

    Google Scholar 

  9. K. Saito, T.S. Nowak, S.P. Markey, M.P. Heyes, Mechanism of delayed increases in kinurenine pathway metabolism in damaged brain regions following transient cerebral ischemiaJ Neurochem60, 180–192 (1993)

    Article  PubMed  CAS  Google Scholar 

  10. M.P. Heyes, K. Saito, A. Lackner, C.A. Wiley, C.L. Achim, S.P. Markey, Sources of the neurotoxin quinolinic acid in the brain of HIV-I-infected patients and retrovirus-infected macaquesFASEB J12, 881–896 (1998).

    PubMed  CAS  Google Scholar 

  11. P. Lapin, Consultant action of intracerebroventriculary administrated L-kynurenine sulphate, quinolinic acid and other derivatives of succinic acid, and effect of amino acid: structure-activity relationshipsNeuropharmacology21, 1227–1233 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. H. Baran, R. Schwarcz, Presence of 3-hydroxyanthranilic acid in rat tissues and evidence for its production from anthranilic acid in the brainJ. Neurochem.55, 738–744 (1990)

    Article  PubMed  CAS  Google Scholar 

  13. D. Ormrod, T. Miller, Experimental uremiaNephron26, 249–254 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. D. Pawlak, Y. Takada, U. Tetsumei, A.Takada, Serotonic and kynurenic pathways in rats exposed to food shockBrain. Res. But3, 197–205 (2000)

    Article  Google Scholar 

  15. C. Hever, P. Beyne, H. Jamault, E. Delacoux, Determination of tryptophan and its kinurenine pathway metabolites in human serum by high-performance liquid chromatograpgy with simultaneous ultraviolet and fluorimetric detectionJ. Chromatogr.675, 157–161 (1996)

    Article  Google Scholar 

  16. E.W. Holmes, Determination of serum kynurenine and hepatic tryptophan dioxygenase activity by high-performance liquid chromatographyAnal. Biochem.172, 518–25 (1988)

    Article  PubMed  CAS  Google Scholar 

  17. D. Pawlak, A. Tankiewicz, W. Buczko, Kynurenine and its metabolites in the rat with experimental renal insufficiencyJ. Physiol. Pharmacol.52, 755–766 (2001).

    PubMed  CAS  Google Scholar 

  18. D. Pawlak, A. Tankiewicz, P. Mysliwiec, W. Buczko, Tryptophan metabolism via kynurenine pathway in experimental chronic renal failureNephron90, 328–335 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. A. Aguilera, R. Selegas, R. Codoceo, A.Bajo, Uremic anorexia: a consequence of persistently high brain serotonine levels? The trptophan/serotonin disorder hypothesisPert Dial. Int. 20, 810–816 (2000).

    CAS  Google Scholar 

  20. E.W. Holmes, S.E. Kahan, Tryptophan ditribution and metabolism in experimental chronic renal insufficiencyExp. Mol. Path.46, 89–101 (1987).

    Article  CAS  Google Scholar 

  21. K. Saito, S. Fujigaki, M.P. Heyes, K. Shibata, M. Takemura, H. Fuji, H. Wada, A. Noma, M. Seishima, Mechanism of increases in L-kynurenine and quinolinic acid in renal insufficiencyAm. J. Physiol. Renal. Physiol.279, F565–F572 (2000).

    PubMed  CAS  Google Scholar 

  22. S. Fukui, R. Schwarcz, S.l. Rapoport, Y. Takadda, Q.R. Smith, Blood-brain transport of kynurenines: implications for brain synthesis and metabolismJ. Neurochem.56, 2007–2017 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. K. Saito, M.P. Heyes, Kynurenine pathway enzymes in brain. Properties of enzymes and regulation of quinolinic acid synthesis, In:Recent advances in tryptophan research.(Plenum Press, New York, 1996), pp. 485–492.

    Google Scholar 

  24. K. Jhamandas, R.J. Boegman, R.J. Beninger, M.. Bialik, Quinolinate-induced cortical cholinergic damage: modulation by tryptophan metabolitesBrain Res.529, 185–191 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. W.E. Dale, Y. Dang, N. Amiridze, O.R. Brown, Evidence that kynurenine pathway metabolites mediate hyperbaric oxygen-induced convulsionsToxicol. Let.117, 37–43 (2000).

    Article  CAS  Google Scholar 

  26. I.P. Lapin, I.B. Prakhie, I.P. Kiseleva, Excitatory effects of kynurenine and its metabolites, amino acids and convulsants administered into brain ventricles: differences between rats and miceJ. Neural. Transm .54, 229–238 (1982).

    Article  PubMed  CAS  Google Scholar 

  27. I. Yokoi, Y. Nishijima, A. Uchida, H. Kabuto, N. Yamamoto, N. Ogawa, Effects of kynurenine metabolites on the electrocorticographic activity in the ratJ. Neural. Transm.105, 147–60 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Topczewska-Bruns, J., Pawlak, D., Tankiewicz, A., Chabielska, E., Buczko, W. (2003). Kynurenine Metabolism in Central Nervous System in Experimental Chronic Renal Failure. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics