Skip to main content

3-Hydroxykynurenine and Quinolinate: Pathogenic Synergism in Early Grade Huntington’s Disease?

  • Chapter
Book cover Developments in Tryptophan and Serotonin Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 527))

Abstract

Huntington’s Disease (HD), an inherited neurodegenerative disorder, is caused by an abnormal polyglutamine extension of a protein named huntingtin. This genetic defect is believed to result in heightened neuronal susceptibility to excitotoxic injury, a likely mechanism of neurodegeneration in HD. Two neuroactive kynurenine pathway metabolites, quinolinate (QUIN) and kynurenate (KYNA), have been proposed to play critical roles in the precipitation and prevention, respectively, of excitotoxic neuron death in HD. We now provide evidence that a third kynurenine pathway metabolite, 3hydroxykynurenine (3-HK), should also be considered a pathogen in HD. The brain levels of this free radical generator are increased 5-10-fold in early stage (Grade 1) HD patients. In the same brains, QUIN levels are also significantly elevated in the cortex and in the neostriatum, but not in the cerebellum. In contrast, brain 3-HK and QUIN levels are either unchanged or reduced in Grade 2 and end stage (Grade 3-4) HD patients. Brain KYNA levels are moderately increased during the early disease stages and decrease as the illness progresses. In rats, 3-HK potentiates striatal QUIN toxicity, and this proexcitotoxic effect can be prevented by free radical scavengers. Taken together, these studies provide further evidence for an involvement of kynurenine pathway metabolites in the early phases of HD neuropathology and suggest novel therapeutic strategies for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Google Scholar 

  2. N. Aronin, M. Kim, G. Laforet, M DiFiglia. Are there multiple pathways in the pathogenesis of Huntington’s disease?Philos. Trans. R. Soc. Lond. B Biol. Sci.354, 995–1003 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. R. Schwarcz and R.L. Albin.Huntington’s Disease lonotropic glutamate receptors as therapeutic targetsedited by D. Lodge, W. Danysz and C.G. Parsons, (F.P. Graham Publishing Co, Johnson City, TN, 2002), pp. 587–610.

    Google Scholar 

  4. S. Okuda, N. Nishiyama, H. Saito, H. Katsuki, Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenineProc. Natl. Acad. Sci.93, 12553–12558 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. P. Guidetti and R. Schwarcz, 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum.Eur. J. Neurosci. 113857–3863 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. A. Chiarugi, E. Meli, F. Moroni, Similarities and differences in the neuronal death processes activated by 30H-kynurenine and quinolinic acidJ. Neurochem.77, 1310–1318 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. A.C. Foster, A. Vezzani, E.D. French, R. Schwarcz, Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acidNeurosci. Lea.48, 273–278 (1984).

    Article  CAS  Google Scholar 

  8. J.P. Vonsattel, R.H. Myers, T.J. Stevens, R.J. Ferrante, E.D. Bird, E.P. Richardson Jr, Neuropathological classification of Huntington’s disease, J.Neuropathol. Exp. Neurol.44, 559–577 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. M.P. Heyes, K.J. Swartz, S.P. Markey, M.F. Beal, Regional brain and cerebrospinal fluid quinolinic acid concentrations in Huntington’s diseaseNeurosci. Lett.122, 265–269 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. M.F. Beal, W.R. Matson, K.J. Swartz, P.N. Gamache, E.D. Bird. Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acidJ. Neurochem.55, 13271339 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. M.F. Beal, W.R. Matson, E. Storey, P. Milbury, E.A. Ryan, T. Ogawa, E.D. Bird, Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortexJ. Neurol. Sci.108, 80–87 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. D. Jauch, E.M. Urbanska, P. Guidetti, E.D. Bird, J.P. Vonsattel, W.O. Whetsell Jr, R. Schwarcz, Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferasesJ Neurol. Sci.130, 37–47 (1995).

    Article  Google Scholar 

  13. S.J. Pearson and G.P. Reynolds, Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington’s diseaseNeurosci. Lett.144, 199–201 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. P. Guidetti, P.H. Reddy, D.A. Tagle, R. Schwarcz, Early kynurenergic impairment in Huntington’s disease and in a transgenic animal modelNeurosci. Lett.283, 233–235 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. H.Q. Wu, P. Guidetti, J.H. Goodman, M. Varasi, G. Ceresoli-Borroni, C. Speciale, H.E. Scharfman, R. Schwarcz, Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivoNeuroscience97, 243–251 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. D.B. Naritsin, R.L. Boni, S.P. Markey, Pentatluorobenzylation method for quantification of acidic tryptophan metabolites using electron capture negative ion mass spectrometryAnal. Chem.67, 863–870 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. B. Poeggeler, A. Rassoulpour, P. Guidetti, H.Q. Wu, R. Schwarcz, Dopaminergic control of kynurenate levels and N-methyl-D-aspartate toxicity in the developing rat striatumDev. Neurosci.20, 146–153 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. C. Speciale, H.Q. Wu, M. Cini, M. Marconi, M. Varasi, R. Schwarcz, (R,S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in ratsEur. J. Pharmacol.315, 263–267 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. W.O. Whetsell Jr and R. Schwarcz, Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal systemNeurosci. Lett.97, 271275 (1989).

    Article  CAS  Google Scholar 

  20. S.J. Kerr, P.J. Armati, G.J. Guillemin, B.J. Brew, Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complexAIDS12, 355–363 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. C.L. Eastman, T.R. Guilarte, Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell lineBrain Res.495, 225–231 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. S. Vazquez, B. Garner, M.M. Sheil, R.J. Truscott, Characterization of the major autoxidation products of 3hydroxykynurenine under physiological conditionsFree Radic Res32, 11–23 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. B.. Poeggeler, M.A. Pappolla, R. Hardeland, A. Rassoulpour, P.S. Hodgkins, P. Guidetti, R. Schwarcz, Indole-3-propionate: a potent hydroxyl radical scavenger in rat brainBrain Res815, 382–388 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. E.D. Hall, P.K. Andrus, S.L. Smith, T.J. Fleck, H.M. Scherch, B.S. Lutzke, G.A. Sawada, J.S. Althaus, P.F. Vonvoigtlander, G.E. Padbury, P.G. Larson, J.R. Palmer, G.L. Bundy, Pyrrolopyrimidines: novel brain-penetrating antioxidants with neuroprotective activity in brain injury and ischemia modelsJ. Pharmacol. Exp. Ther.281, 895–904 (1997).

    PubMed  CAS  Google Scholar 

  25. E. Aizenman, Modulation of N-methyl-D-aspartate receptors by hydroxyl radicals in rat cortical neurons in vitroNeurosci. Lett.189, 57–59 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. A. Lewen, P. Matz, P.H. Chan, Free radical pathways in CNS injuryJ. Neurotrauma17, 871–890 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guidetti, P., Schwarcz, R. (2003). 3-Hydroxykynurenine and Quinolinate: Pathogenic Synergism in Early Grade Huntington’s Disease?. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics