The activation of adenosine Al, A2 and A3 receptors can protect neurones against damage generated by mechanical or hypoxic/ischaemic insults as well as excitotoxins. Al receptors are probably effective by suppressing transmitter release and producing neuronal hyperpolarisation. They are less likely to be of therapeutic importance due to the plethora of side effects resulting from Al agonism, although the existence of receptor subtypes and recent synthetic chemistry efforts to increase ligand selectivity, may yet yield clinically viable compounds.

Activation of A2A receptors can protect neurons, although there is much uncertainty as to whether agonists are acting centrally or via a peripheral mechanism such as altering blood flow or immune cell function. Selective antagonists at the A2A receptor, such as 4-(2-[7-amino-2- {2-furyl} {1,2,4} triazolo {2,3-a} {1,3,5} triazin5-yl-amino]ethyl)phenol (ZM 241385) and 7-(2-phenylethyl)-5-amino-2-(2-furyl)pyrazolo-[4,3e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), can also protect against neuronal death produced by ischaemia or excitotoxicity. In addition, A2A receptor antagonists can reduce damage produced by combinations of subthreshold doses of the endogenous excitotoxin quinolinic acid and free radicals. Since the A2A receptors do not seem to be activated by normal endogenous levels of adenosine, their blockade should not generate significant side effects, so that Am receptor antagonists appear to be promising candidates as new drugs for the prevention of neuronal damage. Adenosine A3 receptors have received less attention to date, but agonists are clearly able to afford protection against damage when administered chronically.

Given the disappointing lack of success of NMDA receptor antagonists in human stroke patients, despite their early promise in animal models, it is possible that A2A receptor antagonists could have a far greater clinical utility.


Adenosine Receptor Kainic Acid Quinolinic Acid Ischaemic Damage CA3a Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zetterstrom T, Vernet L, Ungerstedt U et al. Purine levels in the intact brain, studied with an implanted perfused hollow fibre. Neurosci Lett 1982; 29:111–115.CrossRefPubMedGoogle Scholar
  2. 2.
    Ballarin M, Herrera-Marschitz M, Casas M et al. Striatal adenosine levels measured in vivo by microdialysis in rats with unilateral dopamine denervation. Neurosci Lett 1987; 83:338–344.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen Y, Graham DI, Stone TW. Release of endogenous adenosine and its metabolites by the activation of NMDA receptors in the rat hippocampus in vivo. Brit J Pharmacol 1992; 106:632–638.CrossRefGoogle Scholar
  4. 4.
    Pazzagli M, Corsi C, Latini S et al. In vivo regulation of extracellular adenosine levels in the cerebral cortex by NMDA and muscarinic receptors. Europ J Pharmacol 1994; 254:277–282.CrossRefGoogle Scholar
  5. 5.
    Carswell H V, Graham D I and Stone T W. Kainate-evoked release of adenosine from the hippocampus of the anaesthetised rat: Possible involvement of free radicals. J Neurochem 1997; 68:240–247.CrossRefPubMedGoogle Scholar
  6. 6.
    Latini S, Bordoni F, Pedata F et al. Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Brit J Pharmacol 1999; 127:729–739.CrossRefGoogle Scholar
  7. 7.
    Hagberg H, Andersson P, Lacarewicz J et al. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischaemia. J Neurorchem 1987; 49:227–231.CrossRefGoogle Scholar
  8. 8.
    Andine P, Rudolphi KA, Fredholm BB et al. Effect of propentofylline (HWA285) in extracellular purines and excitatory amino acids in CAI of rat hippocampus during transient ischemia. Brit J Pharmacol 1990; 100:814–818.CrossRefGoogle Scholar
  9. 9.
    Dux E, Fastbom J, Ungerstedt U et al. Protective effect of adenosine and a novel xanthine derivative propentofylline on the cell damage after bilateral carotid occlusion in the gerbil hippocampus. Brain Res 1990; 516:248–256.CrossRefPubMedGoogle Scholar
  10. 10.
    Corradetti, R, Conte, G, Moroni et al. Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Europ J Pharmacol 1984; 140:19–26.CrossRefGoogle Scholar
  11. 11.
    Heron A, Lasbennes F, Seylez J. Adenosine modulation of amino acid release in rat hippocampus during ischaemia and veratridine depolarisation. Brain Res 1993; 608:27–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Poli A, Lucchi R, Vibio M, Barnabei O. Adenosine and glutamate modulate each other s release from rat hippocampal synaptosomes. J Neurochem 1991; 57:298–306.CrossRefPubMedGoogle Scholar
  13. 13.
    Corsi C, Melani A, Bianchi L et al. Effect of adenosine A2A stimulation on GABA release from the striatum of young and aged rats in vivo. NeuroReport 1999; 10:3933–3937.CrossRefPubMedGoogle Scholar
  14. 14.
    Gerber U, Greene RW, Haas HL et al. Characterisation of inhibition mediated by adenosine in the hippocampus of the rat in vitro. J Physiol 1989; 417:567–578.PubMedGoogle Scholar
  15. 15.
    Ameri A, Jurna I. Adenosine Al and non-Al receptors: Intracellular analysis of the actions of adenosine agonists and antagonists in rat hippocampal neurones. Brain Res 1991; 546:69–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Trussel LD, Jackson MB. Adenosine activated potassium conductance in cultured striatal neurones. Proc Nat Acad Sci USA 1985; 82:4857–4861.CrossRefGoogle Scholar
  17. 17.
    Thompson SM, Haas HL, Gahwiler BH. Comparison of the actions of adenosine at presynaptic and postsynaptic receptors in the rat hippocampus in vitro. J Physiol 1992; 451:347–363.PubMedGoogle Scholar
  18. 18.
    Stone TW, ed. Adenosine in the Nervous System. London: Academic Press, 1991.Google Scholar
  19. 19.
    Goodman RR, Snyder SH. Autoradiographic localisation of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J Neurosci 1982; 2:1230–1241.PubMedGoogle Scholar
  20. 20.
    Lee KS, Reddington M. Autoradiographic evidence for multiple CNS binding sites for adenosine derivative. Neuroscience 1986; 19:535–549.CrossRefPubMedGoogle Scholar
  21. 21.
    Fiebich BL, Biber K, Lieb K et al. Cyclooxygenase-2 expression in rat microglia is induced by adenosine A(2a)-receptors. Glia 1996; 18:152–160.CrossRefPubMedGoogle Scholar
  22. 22.
    Rivkees SA, Price SL, Zhou FC. Immunohistochemical detection of Al adenosine receptors in rat brain with emphasis on localisation in the hippocampal forination,cerebral cortex, cerebellum and basal ganglia. Brain Res 1995; 677:193–203.CrossRefPubMedGoogle Scholar
  23. 23.
    Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997; 27:322–335.CrossRefPubMedGoogle Scholar
  24. 24.
    Ochiishi T, Chen L, Yukawa A et al. Cellular localisation of adenosine Al receptors in rat forebrain: Immunohistochemical analysis using adenosine Al receptor-specific monoclonal antibody. J Comp Neurol 1999; 411:301–316CrossRefPubMedGoogle Scholar
  25. 25.
    Ochiishi T, Saitoh Y, Yukawa A et al. High levels of adenosine Al receptor-like immunoreactivity in the CA2/CA3a region of the adult rat hippocampus. Neuroscience 1999; 93:955–967.CrossRefPubMedGoogle Scholar
  26. 26.
    Fastbom J, Pazos A, Probst A et al. Adenosine Al-receptors in human brain: Characterisation and autoradiographic visualisation. Neurosci Lett 1986; 65:127–132.CrossRefPubMedGoogle Scholar
  27. 27.
    Fastbom J, Pazos A, Palacios JM. The distribution of adenosine Al receptors and 5 nudeotidase in the brain of some commonly used experimental animals. Neuroscience 1987; 22:813–826.CrossRefPubMedGoogle Scholar
  28. 28.
    Fastbom J, Pazos A, Probst A, et al. Adenosine Al receptors in the human brain: A quantitative autoradiographic study. Neuroscience 1987; 22:827–839CrossRefPubMedGoogle Scholar
  29. 29.
    von Lubitz DKEJ, Dambrosia JM, Redmond DJ. Protective effect of cyclohexyladenosine in treatment of cerebral ischaemia in gerbils. Neuroscience 1989; 30:451–462.CrossRefGoogle Scholar
  30. 30.
    von Lubitz DJKE, Lin RCS, Bischotberger N et al. Protection against ischemic damage by adenosine amine congener, a potent and selective adenosine Al receptor agonist. Europ J Pharmacol 1999; 369:313–317.CrossRefGoogle Scholar
  31. 31.
    Roucher P. Merit P. Correze JL et al. Metabolic effects of R-phenylisopropyladenosine during reversible forebrain ischemia studied by in vivo 31P nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1991; 11:453–458.CrossRefPubMedGoogle Scholar
  32. 32.
    Miller LP, Hsu C. Therapeutic potential for adenosine receptor activation in ischemic brain injury. J Neurotrauma 1992; 9:S563–S577.PubMedGoogle Scholar
  33. 33.
    Rudolphi KA, Schubert P, Parkinson FE et al. Adenosine and brain ischemia. Cerebrovasc Brain Metab Revs 1992; 4:346–369Google Scholar
  34. 34.
    Tominaga K, Shibata S, Watanabe S. A neuroprotective effect of adenosine Al-receptor agonists on ischemia-induced decrease in 2-deoxyglucose uptake in rat hippocampal slices. Neurosci Lett 1992; 145:67–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Daval J-L, Von Lubitz DJKE, Deckert J et al. Protective effect of cyclohexyladenosine At-receptors, guanine nucleotide and forskolin binding sites following transient brain ischaemia: a quantitative autoradiographic study. Brain Res 1989; 491:212–226.CrossRefPubMedGoogle Scholar
  36. 36.
    Heron A, Lekiettre D, Le Peillet E et al. Effects of an A1 adenosine receptor agonist on the neurochemical, behavioural and histological consequences of ischaemia. Brain Res 1994; 641:217–224.CrossRefPubMedGoogle Scholar
  37. 37.
    Domenici MR, Scotti de Carobs A, Sagratella A. Block by N6-L-phenylisopropyladenosine of the electrophysiological and morphological correlates of hippocampal ischaemic injury in the gerbil. Brit J Pharmacol 1996; 118:1551–1557.CrossRefGoogle Scholar
  38. 38.
    MacGregor DG, Stone TW. Inhibition by the adenosine analogue, (R-)-N6phenylisopropyladenosine, of kainic acid neurotoxicity in rat hippocampus after systemic administration. Brit J Pharmacol 1993; 109:316–321.CrossRefGoogle Scholar
  39. 39.
    MacGregor DG, Miller WJ, Stone TW. Mediation of the neuroprotective action of Rphenylisopropyladenosine through a centrally located adenosine Al receptor. Brit J Pharmacol 1993; 110:470–476.CrossRefGoogle Scholar
  40. 40.
    MacGregor DG, Jones PA, Maxwell WL, Graham DI, Stone TW. Prevention by a purine analogue of kainate-induced neuropathology in rat hippocampus. Brain Res 1996; 725:115–120.PubMedGoogle Scholar
  41. 41.
    Arvin B, Neville LF, Pan J, Roberts Pi. 2-Chloroadenosine attenuates kainic acid-induced toxicity within the rat striatum: relationship to release of glutamate and Ca2+ influx. Brit J Pharmacol 1989; 98:225–235.CrossRefGoogle Scholar
  42. 42.
    Connick JH, Stone TW. Quinolinic acid neurotoxicity: protection by intracerebral phenylisopropyl adenosine (PIA) and potentiation by hypotension. Neurosci Lett 1989; 101:191–196.CrossRefPubMedGoogle Scholar
  43. 43.
    Finn SF, Swartz KJ, Beal MF. 2-Chloroadenosine attenuates NMDA, kainate and quisqualate toxicity. Neurosci Lett 1991; 126:191–194.CrossRefPubMedGoogle Scholar
  44. 44.
    Parkinson FE, Rulolphi KA, Fredholm BB. Propentofylline: a nucleoside transport inhibitor with neuroprotective effects in cerebral ischemia. Gen Pharmacol 1994; 25:1053–1058.CrossRefPubMedGoogle Scholar
  45. 45.
    Lau Y-S, Mouradian MM. Protection against acute MPT-induced dopamine depletion in mice by adenosine. J Neurochem 1993; 60:768–771.CrossRefPubMedGoogle Scholar
  46. 46.
    Ongini E, Monopoli A, Impagnatiello F et al. Dual actions of A2A adenosine receptor antagonists on motor dysfunction and neurodegenerative processes. Drug Develop Res 2001; 52:379–386.CrossRefGoogle Scholar
  47. 47.
    Miller WJ, MacGregor DG, Stone TW. Time course of purine protection against kainateinduced increase in hippocampal [311]-PK11195 binding. Brain Res Bull 1994; 34:133–136.CrossRefPubMedGoogle Scholar
  48. 48.
    Von Lubitz DKJE, Lin RC-S, Paul IA et al. Postischemic administration of adenosine amine congener (ADAC): Analysis of recovery in gerbils. Europ J Pharmacol 1996; 316:171–176.CrossRefGoogle Scholar
  49. 49.
    Bischofberger N, Jacobson KA, von Lubitz DKJE. Adenosine Al receptor agonists as clinically viable agents for treatment of ischemic brain disorders Ann NY Acad Sci 1997; 825:23–29.CrossRefPubMedGoogle Scholar
  50. 50.
    Simon RP. Swan JH, Griffiths T et al. Blockade of NMDA receptors may protect against ischaemic damage in the brain. Science 1984; 226:850–852.Google Scholar
  51. 51.
    Gill R, Foster AC, Woodruff GN. Systemic administration of MK-801 protects against ischaemia induced hippocampal neurodegerneration in the gerbil. J Neurosci 1987; 7:3343–3349.PubMedGoogle Scholar
  52. 52.
    Park CK, Nehls DG, Graham DI et al. Focal cerebral ischaemia in the cat: treatment with the glutamate antagonist MK-801 after induction of ischaemia. J Cereb Blood Flow Metab 1988; 8:757–762.CrossRefPubMedGoogle Scholar
  53. 53.
    Park CK, Nehls G, Graham DI et al. The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann. Neurol. 1988; 24:543–551.CrossRefPubMedGoogle Scholar
  54. 54.
    Kohler C, Schwarcz R, Fuxe K. Perforant path transections protect hippocampal granule cells from kainate lesion. Neurosci Lett 1978; 10:241–246.CrossRefPubMedGoogle Scholar
  55. 55.
    McGeer EG, McGeer PL, Singh K. Kainate-induced degeneration of neostriatal neurones: dependency upon cortical spinal tract. Brain Res 1978; 139:381–383.CrossRefPubMedGoogle Scholar
  56. 56.
    Nadler JV, Cuthbertson GJ. Kainic acid neurotoxicity toward hippocampal formation: dependence on specific excitatory pathways. Brain Res 1980; 195:47–56.CrossRefPubMedGoogle Scholar
  57. 57.
    Heggli DA, Malthe-Sorensen D. Systemic injection of kainic acid: Effect on neurotransmitter markers in pyriform cortex, amygdaloid complex and hippocampus and protection by cortical lesioning and anticonvulsants. Neuroscience 1982; 7:1257–1264.CrossRefPubMedGoogle Scholar
  58. 58.
    Okazaki MM, Nadler JV. Protective effects of mossy fibre lesions against kainic acid induced seizures and neuronal degeneration. Neuroscience 1988; 26:763–781.CrossRefPubMedGoogle Scholar
  59. 59.
    Ferkany JW, Zaczek R, Coyle, IT. Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors. Nature 1982; 298:757–759.CrossRefPubMedGoogle Scholar
  60. 60.
    Lehmann A, Isacsson H, Hamberger A. Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J Neurochem 1983; 40:1314–1320.CrossRefPubMedGoogle Scholar
  61. 61.
    Jacobson I, Hamberger A. Kainic acid-induced changes of extracellular amino acid levels, evoked potentials and EEG activity in the rabbit olfactory bulb. Brain Res 1985; 348:289–296.CrossRefPubMedGoogle Scholar
  62. 62.
    Connick JH, Stone TW. The effects of kainate, beta-kainate and quinolinic acids on the release of endogenous amino acids from rat brain slices. Biochem Pharmacol 1986; 35:3631–3635.CrossRefPubMedGoogle Scholar
  63. 63.
    Virgili M, Poll A, Contestabile A et al. Synaptosomal release of newly synthesised or recently accumulated amino acids; differential effects of kainic acid on naturally occurring excitatory amino acids and on [D-3H]-aspartate. Neurochem Intern 1986; 9:29–33.CrossRefGoogle Scholar
  64. 64.
    Fastbom J, Fredholm BB. Inhibition of (3H)glutamate release from rat hippocampal slices by L-PIA. Acta Physiol Scand 1985; 125:121–123.CrossRefPubMedGoogle Scholar
  65. 65.
    Butcher SP, Bullock R, Graham DI et al. Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion. Stroke 1990; 21:1727–1733.CrossRefPubMedGoogle Scholar
  66. 66.
    Spignoli G, Pedata F, Pepeu G. Al and A2 adenosine receptors modulate acetylcholine release from brain slices. Europ J Pharmacol 1984; 97:341–342.CrossRefGoogle Scholar
  67. 67.
    Brown SJ, James S, Reddington M et al. Both Al and A2A purine receptors regulate striatal acetylcholine release. J Neurochem 1990; 55:31–38.CrossRefPubMedGoogle Scholar
  68. 68.
    Michaelis ML, Michaelis EK, Myers SL. Adenosine modulation of synaptosomal dopamine release. Life Sci 1979; 24:2083–2092.CrossRefPubMedGoogle Scholar
  69. 69.
    Chowdhury M, Fillenz M. Presynaptic adenosine A2 and NMDA receptors regulate dopamine synthesis in rat striatal synaptosomes. J Neurochem 1991; 56:1783–1788.CrossRefPubMedGoogle Scholar
  70. 70.
    Mitani A, Andou Y, Kataoka K. Selective vulnerability of hippocampal CAI neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil: brain microdialysis study. Neuroscience 1992; 48:307–313.CrossRefPubMedGoogle Scholar
  71. 71.
    Cantor SL, Zornow MH, Miller LP et al. The effect of cyclohexyladenosine on the periischemic increases of hippocampal glutamate and glycine in the rabbit. J Neurochem 1992; 59:1884–1892.CrossRefPubMedGoogle Scholar
  72. 72.
    Simpson RE, O Regan MH, Perkins LM et al. Excitatory transmitter amino acid release from the ischaemic rat cerebral cortex: Effects of adenosine reeptor agonists and antagonists. J Neurochem 1992; 58:1683–1690.CrossRefPubMedGoogle Scholar
  73. 73.
    Melani A, Pantoni L, Corsi C et al. Striatal outflow of adenosine, excitatory amino acids, GABA, and taurine in awake, freely moving rats after middle cerebral artery occlusion Correlation with neurological deficit and histopathological damage. Stroke 1999; 30:2448–2454.CrossRefPubMedGoogle Scholar
  74. 74.
    Ochoa MC, Jackson TA, Aaron CS et al. Antagonism of kainic acid lesions in the mouse hippocampus by U-54494A and U-50488H. Life Sci 1992; 51:1135–1143.CrossRefGoogle Scholar
  75. 75.
    Graham SH, Chen J, Sharp FR et al. Limiting ischaemic injury by inhibition of excitatory amino acid release. J Cereb Blood Flow Metab 1993; 13:88–97.CrossRefPubMedGoogle Scholar
  76. 76.
    Kano T, Katayama Y, Kawamata T et al. Propentofylline administered by microdialysis attenuates ischemia-induced hippocampal damage but not excitatory amino acid release in gerbils. Brain Res 1994; 641:149–154.CrossRefPubMedGoogle Scholar
  77. 77.
    Fredholm BB, Dunwiddie TV. How does adenosine inhibit transmitter release? Trends Pharmacol Sci 1988; 9:130–134.CrossRefPubMedGoogle Scholar
  78. 78.
    Dolphin AC, Prestwich SA. Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 1985; 316:148–150.CrossRefPubMedGoogle Scholar
  79. 79.
    Scholz KP, Miller RJ. Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 1991; 8:1139–1150.CrossRefGoogle Scholar
  80. 80.
    Greene RW, Haas HL The electrophysiology of adenosine in the mammalian CNS. Progr Neurobiol 1991; 36:329–341.CrossRefGoogle Scholar
  81. 81.
    Regenold JT, I11es P. Inhibitory adenosine Al-receptors on rat locus coeruleus neurones. An intracellular electrophysiological study. 1990; Naunyn-Schmied Arch Pharmacol 341:225–231.CrossRefGoogle Scholar
  82. 82.
    Hosseinzadeh H, Stone TW. Tolbutamide blocks postsynaptic but not presynaptic effects of adenosine on hippocampal CAI neurons. J Neural Transm 1998; 105:161–172.CrossRefPubMedGoogle Scholar
  83. 83.
    Mager R, Ferroni S, Schubert P Adenosine modulates a voltage-dependent chloride conductance in cultured hippocampal neurons. Brain Res 1990; 532:58–62.CrossRefPubMedGoogle Scholar
  84. 84.
    Schubert P, Ferroni S, Mager R Pharmacological blockade of chloride pumps on chloride channels reduces the adenosine-mediated depression of stimulus train-evoked calcium fluxes in rat hippocampal slices. Neurosci Lett 1991; 124:174–177.CrossRefPubMedGoogle Scholar
  85. 85.
    Globus M Y T, Busto R, Dietrich W D et al. Effect of ischaemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 1988; 51:1455–1464.CrossRefPubMedGoogle Scholar
  86. 86.
    Rudolphi KA, Keil M, Hinze HJ. Effect of theophylline on ischemically induced hippocampal damage in Mongolian gerbils: á behavioural and histopathological study. J Cereb Blood Flow Metab 1987; 7:74–81.CrossRefPubMedGoogle Scholar
  87. 87.
    Phillis JW. The effects of selective Al and A2A adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 1995; 705:79–84.CrossRefPubMedGoogle Scholar
  88. 88.
    von Lubitz DJKE, Lin RC-S, Melman N et al. Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischaemia. Europ J Pharmacol 1994; 256:161–167.CrossRefGoogle Scholar
  89. 89.
    MacGregor DG, Stone TW. Blockade by 1,3-dipropyl-8-cyclopentylxanthine (CPX) of purine protection against kainate neurotoxicity. Brain Res 1994; 644:339–342.CrossRefPubMedGoogle Scholar
  90. 90.
    Bartrup JT, Stone TW. Activation of NMDA receptor-coupled channels suppresses the inhibitory action of adenosine on hippocampal slices. Brain Res 1990; 530:330–334.CrossRefPubMedGoogle Scholar
  91. 91.
    Bartrup JT, Addae JI, Stone TW. Interaction between adenosine and excitatory agonists in rat hippocampal slices. Brain Res 1991; 564:323–327.CrossRefPubMedGoogle Scholar
  92. 92.
    Nikbakht M-R, Stone TW. Activation of NMDA receptors suppresses the presynaptic effects of adenosine. Brit J Pharmacol 2001; 133:155PGoogle Scholar
  93. 93.
    Gustaffson LE, Wiklund CU, Wiklund NP et al. Identification of subclasses of adenosine Al receptors. Suggestion of Ala and Alb subclasses and evidence from antagonist data. In: Ribeiro JA, ed. Adenosine Receptors in the Nervous System. London: Taylor & Francis, 1989:194.Google Scholar
  94. 94.
    Knutsen LJS, Lau J, Petersen H et al. N-substituted adenosines as novel neuroprotective Al agonists with diminished hypotensive effects. J Med Chem 1999; 42:3463–3477.CrossRefPubMedGoogle Scholar
  95. 95.
    Rudolphi KA, Keil M, Fastbom J et al. Ischemic damage in gerbil hippocampus is reduced following upregulation of adenosine Al receptors by caffeine treatment. Neurosci Lett 1989; 103:275–280.CrossRefPubMedGoogle Scholar
  96. 96.
    Sutherland GR, Peeling J, Lesiuk J et al. The effects of caffeine on ischemic neuronal injury as determined by magnetic resonance imaging and histopathology. Neuroscience 1991; 42:171–182.CrossRefPubMedGoogle Scholar
  97. 97.
    Traversa U, Rosati AM, Florio C et al. Effects of chronic administration of adenosine antagonists on adenosine Al and A2A receptors in mouse brain. In vivo 1994; 8:1073–1978.PubMedGoogle Scholar
  98. 98.
    Latini S, Pazzagli M, Pepeu G et al. A2 adenosine receptors: Their presence and neuromodulatory role in the CNS. Gen Pharmacol 1996; 27:925–933.CrossRefPubMedGoogle Scholar
  99. 99.
    Ongini E, Fredholm BB. Pharmacology of adenosine A2A receptors. Trends Pharmacol Sci 1996; 17:364–372.PubMedGoogle Scholar
  100. 100.
    Moreau JL, Huber G. Central adenosine A2A receptors: An overview. Brain Res Revs 1999; 31:65–82.CrossRefGoogle Scholar
  101. 101.
    Jarvis MF, Williams M. Direct autoradiographic localisation of adenosine A2 receptors in the brain using the A2-selective agonist, [3H]CGS21680. Europ J Pharmacol 1989; 168:243–246.CrossRefGoogle Scholar
  102. 102.
    Schiffmann SN, Jacobs O, Vanderhaegen JJ. Striatal restricted adenosine A2 receptor (RDCB) is expressed by enkephalin but not by substance P neurons: An in situ hybridisation histochemistry study. J Neurochem 1991; 57:1062–1067.CrossRefPubMedGoogle Scholar
  103. 103.
    Kurokawa M, Kirk IP, Kirkpatrick KA et al. Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and acetylcholine release. Brit J Pharmacol 1994; 113:43–48.CrossRefGoogle Scholar
  104. 104.
    Cunha RA, Johansson B, Van der Ploeg I et al. Evidence for functionally important adenosine A2A receptors in the rat hippocampus. Brain Res 1994; 649:208–216.CrossRefPubMedGoogle Scholar
  105. 105.
    Dixon AK, Gubitz AK, Sirinathsinghji DJS et al. Tissue distribution of adenosine receptor mRNAs in the rat. Brit J Pharmacol 1996; 118:1461–1468.CrossRefGoogle Scholar
  106. 106.
    Cunha RA, Johansson B, Constantino MD et al. Evidence for high affinity binding sites for the adenosine A2A receptor agonist [311]CGS21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn-Schmiedeberg s Arch Pharmacol 1996; 353:261–271.CrossRefGoogle Scholar
  107. 107.
    Martinez-Mir MI, Probst A, Palacios JM. Adenosine A2 receptors: selective localisation in the human basal ganglia and alterations with disease. Neuroscience 1991; 42:697–706.CrossRefPubMedGoogle Scholar
  108. 108.
    Sheardown MJ, Knutsen LJS. Unexpected neuroprotection observed with the adenosine A2A receptor agonist CGS2I680. Drug Develop Res 1996; 39:108–114.CrossRefGoogle Scholar
  109. 109.
    Jones PA, Smith RA, Stone TW. Protection against intrahippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist. Brain Res 1998; 800:328–335.CrossRefPubMedGoogle Scholar
  110. 110.
    Jones PA, Smith RA, Stone TW. Protection against kainate-induced excitotoxicity by adenosine AZA receptor agonists and antagonists. Neuroscience 1998; 85:229–237.CrossRefPubMedGoogle Scholar
  111. 111.
    Sperk G. Kainic acid seizures in the rat. Prog Neurobiol 1994; 42:1–32.CrossRefPubMedGoogle Scholar
  112. 112.
    Bridges A J, Bruns R F, Ortwine D F et al. N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and its uronamide derivatives. Novel adenosine agonists and antagonists with both high affinity and high selectivity for the adenosine A2 receptor. J Med Chem 1988; 31:1282–1285.CrossRefPubMedGoogle Scholar
  113. 113.
    Merkel LA, Lappe RW, Rivera LM et al. Demonstration of vasorelaxant activity with an A1-selective adenosine agonist in porcine coronary artery: involvement of potassium channels. J Pharmacol Exp Ther 1992; 260:437–443.PubMedGoogle Scholar
  114. 114.
    Hutchison AJ, Webb RL, Oei HH et al. CGS21680, an A2 selective adenosine receptor agonist with preferential hypotensive activity. J Pharmacol Exp Ther 1989; 251:47–55.PubMedGoogle Scholar
  115. 115.
    Lupica CR, Cass WA, Zahniser NR et al. Effects of the selective adenosine agonist CGS21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum. J Pharmacol Exp Ther 1990; 252:1134–1141.PubMedGoogle Scholar
  116. 116.
    von Lubitz DKJE, Lin RC-S and Jacobson KA. Cerebral ischaemia in gerbils: Effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Europ J Pharmacol 1995; 287:295–302.CrossRefGoogle Scholar
  117. 117.
    Kim HO, Ji X-D, Sidiqqi SM et al. 2-Substitution of N6-benzyladenosine-5 -uronamides enhances selectivity for A3 adenosine receptors. J Med Chem 1994; 21:3614–3621.CrossRefGoogle Scholar
  118. 118.
    von Lubitz DJKE, Lin RC-S, Popik P et al. Adenosine A3 receptor stimulation and cerebral ischaemia. Europ J Pharmacol 1994; 26:59–67.CrossRefGoogle Scholar
  119. 119.
    Gao Y, Phillis JW. CGS 15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic injury in the mongolian gerbil. Life Sci 1994; 55:PL61–PL65.CrossRefPubMedGoogle Scholar
  120. 120.
    Monopoli A, Lozza G, Forloni A et al. Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. NeuroReport 1998; 9:355–395.CrossRefGoogle Scholar
  121. 121.
    Ongini E, Adami M, Ferri C et al. Adenosine A2A receptors and neuroprotection. Ann NY Acad Sci 1997; 825:30–48CrossRefPubMedGoogle Scholar
  122. 122.
    Palmer TM, Poucher SM, Jacobson KA et al.1251–4-(2-[7-amino-2-{2furyl} {1,2,4} triazolo {2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol, a high affinity antagonist radioligand selective for the A2A adenosine receptor. Mol Pharmacol 1995; 48:970–974.PubMedGoogle Scholar
  123. 123.
    Poucher SM, Keddie JR, Singh P et al. The in vitro pharmacology of ZM241385, a potent non-xanthine, A2A selective adenosine receptor antagonist. Brit J Pharmacol 1995; 115:1096–1102.CrossRefGoogle Scholar
  124. 124.
    Robledo P, Ursu G, Mahy N. Effects if adenosine and GABA-A receptor antagonists on NMDA-induced neurotoxicity in the rat hippocampus. Hippocampus 1999; 9:527–533.CrossRefPubMedGoogle Scholar
  125. 125.
    Bona E, Aden U, Gilland E et al. Neonatal cerebral hypoxia-ischemia: The effect of adenosine receptor antagonists. Neuropharmacology 1997; 9:1327–1338CrossRefGoogle Scholar
  126. 126.
    Chen JF, Huang Z, Ma J et al. A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 1999; 19:9192–9200PubMedGoogle Scholar
  127. 127.
    Regan MH, Simpson RE, Perkins LM et al. The selective A2 adenosine receptor agonist CGS21680 enhances excitatory amino acid release from the ischaemic rat cerebral cortex. Neurosci Lett 1992; 138:169–172.CrossRefGoogle Scholar
  128. 128.
    Sebastiao AM, Ribeiro JA. Evidence for the presence of excitatory. A2 adenosine receptors in the rat hippocampus. Neurosci Lett 1992; 138:41–44.CrossRefPubMedGoogle Scholar
  129. 129.
    Goncalves ML, Cunha RA, Ribeiro JA. Adenosiné A2A receptors facilitate 45Ca2+ uptake through class A calcium channels in rat hippocampal CA3 but not CA1 synaptosomes. Neurosci Lett 1997; 238:73–77.CrossRefPubMedGoogle Scholar
  130. 130.
    Jin S, Fredholm BB. Adenosine A2A receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Arch Pharmacol 1997; 355:48–56.CrossRefGoogle Scholar
  131. 131.
    Broad RM, Fredholm BB. Al, but not A2A adenosine receptors modulate electrically stimulated [14C]acetylcholine release from rat cortex. J Pharmacol Exp Therap 1996; 277:193–197.Google Scholar
  132. 132.
    Mayfield RD, Suzuki F, Zahniser NR. Adenosine A2A receptor modulation of electrically evoked endogenous GABA release from rat globus pallidus. J Neurochem 1993; 60:2334–2337.CrossRefPubMedGoogle Scholar
  133. 133.
    Dixon AK, Widdowson L, Richardson PJ. Desensitisation of the adenosine Al receptor by theA2A receptor in the rat striatum. J Neurochem 1997; 69:315–321.CrossRefPubMedGoogle Scholar
  134. 134.
    Kane EM, Stone TW. Interactions between Al and A2 adenosine receptor-mediated responses in the rat hippocampus in vitro. Europ J Pharmacol 1998; 362:17–25.CrossRefGoogle Scholar
  135. 135.
    Latini S, Bordoni F, Corradetti R et al. Effect of A2A adenosine receptor stimulation and antagonism on synaptic depression induced by in vitro ischaemia in rat hippocampal slices. Brit J Pharmacol 1999; 128:1035–1044.CrossRefGoogle Scholar
  136. 136.
    Correia-de-Sa P, Ribeiro JA. Tonic adenosine A2A receptor activation modulates nicotinic autoreceptor function at the rat neuromuscular junction. Europ J Pharmacol 1994; 271:349–355.CrossRefGoogle Scholar
  137. 137.
    Cunha RA, Correia-de-Sa P, Sebasti o AM et al. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. Brit J Pharmacol 1996; 119:253–260.CrossRefGoogle Scholar
  138. 138.
    Cheng Y, Sun AY. Oxidative mechanisms involved in kainate-induced cytotoxicity in cortical neurones. Neurochem Res 1994; 19:1557–1564.CrossRefPubMedGoogle Scholar
  139. 139.
    Kitagawa K, Matsumoto M, Oda T et al. Free radical generation during brief period of cerebral ischaemia may trigger delayed neuronal death. Neuroscience 1990; 35:551–558.CrossRefPubMedGoogle Scholar
  140. 140.
    MacGregor DG, Higgins MJ, Jones PA et al. Ascorbate attenuates the systemic kainateinduced neurotoxicity in the rat hippocampus. Brain Res 1996; 727:133–144.CrossRefPubMedGoogle Scholar
  141. 141.
    Neill M, Canney M, Feeney C et al. Protective effects of exifone, a free radical scavenger, against ischaemia-induced hippocampal neurodegeneration in the gerbil. Med Sci Res 1994; 22:589–590.Google Scholar
  142. 142.
    Cronstein BN, Rosenstein ED, Kramer SB. Adenosine: A physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol 1985; 135:1366–1371.PubMedGoogle Scholar
  143. 143.
    Cronstein BN, Daguma L, Nichols D et al. The adenosine/neutrophil paradox resolved: human neutrophils possess both Al and A2 receptors that both promote chemotaxis and inhibit 02 generation respectively. J Clin Invest 1990; 85:1150–1157.CrossRefPubMedGoogle Scholar
  144. 144.
    Stone TW, Perkins MN. Quinolinic acid: A potent endogenous excitant at amino acid receptors in the CNS. Europ J Pharmacol 1981; 72:411–412.CrossRefGoogle Scholar
  145. 145.
    Stone TW. The Neuropharmacology of quinolinic acid and kynurenic acid. Pharmacol Revs 1993; 45:309–379.Google Scholar
  146. 146.
    Stone TW. Kynurenines in the CNS: from endogenous obscurity to clinical relevance. Progr Neurobiol 2001; 64:185–218CrossRefGoogle Scholar
  147. 147.
    Perkins MN, Stone TW. An iontophoretic investigation of the action of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 1982; 247:184–187.CrossRefPubMedGoogle Scholar
  148. 148.
    Stone TW. The development and therapeutic potential of kynurenic acid and kynurenine derivatives for CNS neuroprotection. Trends Pharmacol Sci 2000; 21:149–154CrossRefPubMedGoogle Scholar
  149. 149.
    Cronstein BN, Kubersky SM, Weissman G et al. Engagement of adenosine receptors inhibits hydrogen peroxide-release by activated human neutrophils. Clin Immunol Immunopathol 1987; 42:76–85CrossRefPubMedGoogle Scholar
  150. 150.
    Cronstein BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994; 76:5–13.PubMedGoogle Scholar
  151. 151.
    Burkey TH, Webster RD. Adenosine inhibits fMLP-stimulated adherence and superoxide anion generation by human neutrophils at an early step in signal transduction. Biochem Biophys Acta 1993; 1175:312–318.CrossRefPubMedGoogle Scholar
  152. 152.
    Dianzani C, Brunelleschi S, Viano I et al. Adenosine modulation of primed human neutrophils. Europ J Pharmacol 1994; 263:223–226.CrossRefGoogle Scholar
  153. 153.
    Hannon JP, Bray-French KM, Phillips RM et al. Further pharmacological characterization of the adenosine receptor subtype mediating inhibition of oxidative burst in human isolated neutrophils. Drug Development Res 1998; 43:214–224CrossRefGoogle Scholar
  154. 154.
    Revan S, Montesinos MC, Naime D et al. Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J Biol Chem 1996; 271:17114–17118.CrossRefPubMedGoogle Scholar
  155. 155.
    Varani K, Gessi S, Dionisotti S et al. [3H]-SCH58261 labelling of functional A2A receptors in human neutrophil membranes. Brit J Pharmacol 1998; 123:1723–1731.CrossRefGoogle Scholar
  156. 156.
    Cronstein BN, Levin RI, Phillips MR et al. Neutrophil adherence to endothelium is enhanced via adenosine Al receptors and inhibited via adenosine A2 receptors. J Immunol 1992; 148:2201–2206.PubMedGoogle Scholar
  157. 157.
    Barnes CR, Mandell GL, Carper HT et al. Adenosine modulation of TNFa-induced neutrophil activation. Biochem Pharmacol 1995; 50:1851–1857.CrossRefPubMedGoogle Scholar
  158. 158.
    Lappin D, Whaley K. Adenosine A2 receptors on human monocytes modulate C2 production. Clin Exp Immunol 1984; 57:454–460.PubMedGoogle Scholar
  159. 159.
    LeVraux V, Chen YL, Masson I et al. Inhibition of human monocyte TNF production by adenosine receptor agonists. Life Sci 1993; 52:1917–1924.CrossRefGoogle Scholar
  160. 160.
    Ritchie PK, Spangelo BL, Krzymoski DK et al. Adenosine increases interleukin-6 release and decreases TNF release from rat adrenal zona glomerulosa cells, ovarian cells, anterior pituitary cells and peritoneal macrophages. Cytokine 1997; 9:187–198.CrossRefPubMedGoogle Scholar
  161. 161.
    Link AA, Kino T, Worth JA et al. Ligand activation of the adenosine A2A receptors inhibits IL-12 production by human monocytes. J Immunol 2000; 164:436–442.PubMedGoogle Scholar
  162. 162.
    Rathbone MP, Middlemiss PJ, DeLuca B et al. Extracellular guanosine increases astrocyte cAMP: inhibition by adenosine A2 antagonists. NeuroReport 1991; 2:661–664.CrossRefPubMedGoogle Scholar
  163. 163.
    Rathbone MP, Middlemiss PJ, Gysbers JW et al. Trophic effects of purines in neurons and glial cells. Progr Neurobiol 1999; 59:663–690.CrossRefGoogle Scholar
  164. 164.
    Hindley S, Herman MAR, Rathbone MP. Stimulation of astrogliosis in vivo by extracellular ADP or an adenosine A2 receptor agonist. J Neurosci Res 1994; 38:399–406.CrossRefPubMedGoogle Scholar
  165. 165.
    Zhao ZQ, McGee DS, Nakanishi K et al. Receptor-mediated cardioprotective effects of endogenous adenosine are exerted primarily during reperfusion after coronary occlusion in the rabbit. Circulation 1993; 88:709–719.CrossRefPubMedGoogle Scholar
  166. 166.
    Matherne GP, Linden J, Byford AM et al. Transgenic Al adenosine receptor overexpression increases myocardial resistance to ischemia. Proc Nat Acad Sci USA 1997; 94:6541–6546.CrossRefPubMedGoogle Scholar
  167. 167.
    Meldrum DR, Cain BS, Cleveland JC et al. Adenosine decreases post-ischemic cardiac TNFa production: Anti-inflammatory implications for preconditioning and transplantation. Immunology 1997; 92:472–477.CrossRefPubMedGoogle Scholar
  168. 168.
    Wagner DR, Combes A, McTiernan C et al. Adenosine inhibits lipopolysaccharide-induced cardiac expression of TNFa. Cire Res 1998; 82:47–56.CrossRefGoogle Scholar
  169. 169.
    Wagner DR, McTiernan C, Sanders VT et al. Adenosine inhibits lipopolysaccharide-induced secretion of TNFa in the failing human heart. Circulation 1998; 97:521–524.CrossRefPubMedGoogle Scholar
  170. 170.
    Cain BS, Meldrum DR, Dinarello CA et al. adenosine reduces cardiac TNFa production and human myocardial injury following ischemia-reperfusion. J Surg Res 1998; 76:117–123.CrossRefPubMedGoogle Scholar
  171. 171.
    Bullough DA, Magill MJ, Firestein GS et al. Adenosine activates A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes. J Immunol 1995; 155:2579–2586.PubMedGoogle Scholar
  172. 172.
    Lozza G, Conti A, Ongini E et al. Cardioprotective effects of adenosine Al and A2A receptor agonists in the isolated heart. Pharmacol Res 1997; 35:57–64.CrossRefPubMedGoogle Scholar
  173. 173.
    Casati C, Forlani A, Lozza G et al. Hemodynamic changes do not mediate the cardioprotection induced by the Al adenosine receptor agonist CCPA in the rabbit. Pharmacol Res 1997; 35:51–55.CrossRefPubMedGoogle Scholar
  174. 174.
    Cargnoni A, Ceconi C, Boraso A et al. Role of A2A receptors in the modulation of myocardial reperfusion damage. J Cardiovasc Pharmacol 1999; 33:883–893.CrossRefPubMedGoogle Scholar
  175. 175.
    Kerr JFR. Shrinkage necrosis: A distinct mode of cellular death. J Pathol 1971; 105:13–20.CrossRefPubMedGoogle Scholar
  176. 176.
    Honkaniemi J, Massa SN, Breckinridge M et al. Global ischaemia induces apoptosis-associated genes in hippocampus. Mol Brain Res 1996; 42:79–88.CrossRefPubMedGoogle Scholar
  177. 177.
    Weiss S, Cataltepe O, Cole AJ. Anatomical studies of DNA fragmentation in rat brain after systemic kainate administration. Neuroscience 1996; 74:541–551.CrossRefPubMedGoogle Scholar
  178. 178.
    Sastry PS, Rao KS. Apoptosis and the Nervous System. J Neurochem 2000; 74:1–20.CrossRefPubMedGoogle Scholar
  179. 179.
    Nishiyama K, Kwak S, Takekoshi S et al. In situ nick end-labelling detects necrosis of hippocampal pyramidal cells induced by kainic acid. Neurosci Lett 1996; 212:139–142.CrossRefPubMedGoogle Scholar
  180. 180.
    Pollard H, Charriaut-Marlangue C, Cantagrel S et al. Kainate induced apoptotic cell death in hippocampal neurones. Neuroscience 1994; 63:7–18.CrossRefPubMedGoogle Scholar
  181. 181.
    Simonian NA, Getz RL, Leveque JC et al. Kainate induces apoptosis in neurones. Neuroscience 1996; 74:675–683.CrossRefPubMedGoogle Scholar
  182. 182.
    Filipkowski RK, Hetman M, Kaminska B et al. DNA fragmentation in rat brain after intraperitoneal administrtion of kainate. Neuroreport 1994; 5:1538–1540.CrossRefPubMedGoogle Scholar
  183. 183.
    Kasof GM, Mandelzys A, Maika SD et al. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats. J Neuroscience 1995; 15:4238–4249.Google Scholar
  184. 184.
    Smeyne RJ, Vendrell M, Hayward M et al. Continuous c-fos expression precedes programmed cell death in vivo. Nature 1993; 363:166–169.CrossRefPubMedGoogle Scholar
  185. 185.
    Konopka D, Norwicka D, Filipkowski R K et al. Kainate-evoked secondary gene expression in the rat hippocampus. Neurosci Lett 1995; 185:167–170.CrossRefPubMedGoogle Scholar
  186. 186.
    Stone TW, Jones PA, Smith RA. Neuroprotection by A2A receptor antagonists. Drug Develop Res 2001; 52:323–330.CrossRefGoogle Scholar
  187. 187.
    Ankarcrona M, Dypbukt JM, Bonfoco E et al. Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15:961–973.CrossRefPubMedGoogle Scholar
  188. 188.
    Reggio R, Pezzola A, Popoli P. The intrastriatal injection of an adenosine A2A receptor antagonist prevents frontal cortex EEG abnormalities in a rat model of Huntington s disease. Brain Res 1999; 831:315–318.CrossRefPubMedGoogle Scholar
  189. 189.
    Corsi C, Melani A, Bianchi L et al. Striatal A2A adenosine receptors differentially regulate spontaneous and K+-evoked glutamate release in vivo in young and aged rats. NeuroReport 1999; 10:687–691.CrossRefPubMedGoogle Scholar
  190. 190.
    Abbracchio MP, Fogliatto G, Paoletti AM et al. Prolonged in vitro exposure of rat brain slices to adenosine analogues: selective desensitsation of Al but not A2 receptors. Europ J Pharmacol 1992; 227: 17–324.Google Scholar
  191. 191.
    Mally J, Stone TW. The effect of theophylline on parkinsonian symptoms. J Pharm Pharmacol 1994; 46:515–517CrossRefPubMedGoogle Scholar
  192. 192.
    Mally J, Stone TW. Potential role of adenosine antagonist therapy in the treatment of pathological tremor disorders. Pharmacol Therap 1996; 72:243–250.CrossRefGoogle Scholar
  193. 193.
    Mally J, Stone TW. Potential of adenosine A2A receptor antagonists in the treatment of movement disorders. CNS Drugs 1998; 10:311–320.CrossRefGoogle Scholar
  194. 194.
    Grondin R, Bedard PJ, Tahar AH et al. Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 1999; 52:1673–1677.CrossRefPubMedGoogle Scholar
  195. 195.
    Kanda T, Jackson MJ, Smith LA et al. Adenosine A2A antagonist: A novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 1998; 43:507–513.CrossRefPubMedGoogle Scholar
  196. 196.
    Johannson B, Fredhom BB. Further characterisation of the binding of the adenosine receptor agonist [3H]CGS21680 to rat brain using autoradiography. Neuropharmacology 1995; 34:393–403.CrossRefGoogle Scholar
  197. 197.
    Johansson B, Georgiev V, Parkinson FE et al. The binding of the adenosine A2-selective agonist [3H]CGS 21680 to rat cortex differs from its binding to rat striatum. Europ J Pharmacol 1993; 247:103–110.CrossRefGoogle Scholar
  198. 198.
    Lindstrom K, Ongini E, Fredholm BB. The selective A2A receptor antagonist SCH 58261 discriminates between two different binding sites for [3H]CGS 21680 in the rat brain, Arch Pharmacol 1996; 354:539–541.CrossRefGoogle Scholar
  199. 199.
    El-Yacoubi M, Ledent C, Parmentier M et al. SCH 58261 and ZM241395 differentially prevent the motor effects of CGS 21680 in mice: Evidence for a functional atypical adenosine A2A receptor. Europ J Pharmacol 2000; 401:63–77.CrossRefGoogle Scholar
  200. 200.
    Zhou QY, Li C, Olah ME et al. Molecular cloning and characterisation of an adenosine receptor: the A3 receptor. Proc Nat Acad Sci USA 1992; 89:7432–7436.CrossRefPubMedGoogle Scholar
  201. 201.
    Jacobson KA. Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 1998; 19:184–191.CrossRefPubMedGoogle Scholar
  202. 202.
    Rivkees SA, Thevananther S, Hao H. Are A3 adenosine receptors expressed in the brain? NeuroReport 2000; 11:1025–1030.CrossRefPubMedGoogle Scholar
  203. 203.
    Sei Y, Lubitz DKJE, Abbracchio MP et al. Adenosine A3 receptor agonist-induced neurotoxicity in rat cerebellar granule neurons. Drug Develop Res. 1997; 40:267–273.CrossRefGoogle Scholar
  204. 204.
    von Lubitz DKJ, Lin RCS, Boyd M et al. Chronic administration of adenosine A3 receptor agonist and cerebral ischemia: Neuronal and glial effects. Europ J Pharmacol 1999; 367:157–163.CrossRefGoogle Scholar
  205. 205.
    Dunwiddie TV, Diao L, Kim HO et al. Activation of hippocampal adenosine A3 receptors produces a desensitisation of Al receptor-mediated responses in rat hippocampus. J Neurosci 1997; 17:607–614PubMedGoogle Scholar
  206. 206.
    Hasko G, Nemeth ZH, Vizi ES et al. An agonist of adenosine A3 receptors decreases interleukin-I2 and interferon-y production and prevents lethality in endotoxemic mice. Europ J Pharmacol 1998; 358:261–268.CrossRefGoogle Scholar
  207. 207.
    Ezeamuzie CI, Phillips E. Adenosine A3 receptors on human eosinophils mediate inhibition of degranulation and superoxide anion release. Brit J Pharmacol 1999; 127:188–194.CrossRefGoogle Scholar
  208. 208.
    Maggirwar SB, Dhanraj DN, Somani SM et al. Adenosine acts as an endogenous activator of the cellular antioxidant defense system. Biochem Biophys Res Comm 1994; 201:508–515.CrossRefPubMedGoogle Scholar
  209. 209.
    Sajjadi FG, Takabayashi K, Foster AC et al. Inhibition of TNF-a expression by adenosine: Role of A3 adenosine receptors. J Immunol 1996; 156:3435–3442.PubMedGoogle Scholar
  210. 210.
    McWhinney CD, Dudley MW, Bowlin TL et al. Activation of adenosine A3 receptors on macrophages inhibits TNFa. Europ J Pharmacol 1996; 310:209–216.CrossRefGoogle Scholar
  211. 211.
    Knutsen LJS, Sheardown MJ, Roberts SM et al. Adenosine Al and A3 selective Nalkoxypurines as novel cytokine modulators and neuroprotectants. Drug Develop Res 1998; 45:214–221.CrossRefGoogle Scholar
  212. 212.
    Liang BT, Jacobson KA. A physiological role of the adenosine A3 receptor: Sustained cardioprotection Proc Nat Acad Sci 1998; 95:6995–6999.CrossRefPubMedGoogle Scholar
  213. 213.
    Jordan JE, Thourani VII, Auchampach JA et al. A3 adenosine receptor activation attenuates neutrophil function and neutrophil-mediated reperfusion injury. Amer J Physiol 1999; 277:H1895–H1905.PubMedGoogle Scholar
  214. 214.
    Thourani VH, Nakamura M, Ronson RS et al. Adenosine A3 receptor stimulation attenuates postischemic dysfunction through K(ATP) channels. Amer J Physiol 1999; 277:H228–H235.PubMedGoogle Scholar
  215. 215.
    Abbracchio MP, Rainaldi G, Giammarioli AM et al. The A3 adenosine receptor mediates cell spreading, reorganisation of actin cytoskeleton and distribution of Bel-x(4 Studies in human astroglioma cells. Biochem Biophys Res Comm 1997; 241:297–304.CrossRefPubMedGoogle Scholar
  216. 216.
    Herold JA, Kron IL, Langenburg SE et al. Complete prevention of postischemic spinal cord injury by means of regional infusion with hypothermic saline and adenosine. J Thorac Cardiovasc Surg 1994; 107:536–542.PubMedGoogle Scholar
  217. 217.
    Phillis JW, O Regan MH. Prevention of ischemic brain injury by adenosine receptor activation. Drug Develop Res 1993; 28:390–394.CrossRefGoogle Scholar
  218. 218.
    Jiang N, Kowaluk EA, Lee CH et al. Adenosine kinase inhibition protects against transient focal ischemic in rats. Europ J Pharmacol 1997; 320:131–137.CrossRefGoogle Scholar
  219. 219.
    Lin Y, Phillis JW. Deoxycoformycin and oxypurinol: Protection against focal ischemic brain injury in the rat. Brain Research 1992; 571:272–280.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Trevor W. Stone
    • 1
  1. 1.Division ofNeuroscience and Biomedical SystemsWest Medical Bldg, University of GlasgowGlasgowUK

Personalised recommendations