Advertisement

Ischemia and Stroke

  • Matthias Endres
  • Ulrich Dirnagl
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 513)

Abstract

Cell death following cerebral ischemia is mediated by a complex pathophysiologic interaction of different mechanisms. In this Chapter we will outline the basic principles as well as introduce in vitro and in vivo models of cerebral ischemia. Mechanistically, excitotoxicity, peri-infarct depolarization, inflammation and apoptosis seem to be the most relevant mediators of damage and are promising targets for neuroprotective strategies.

Keywords

Nitric Oxide Cerebral Ischemia Middle Cerebral Artery Occlusion Circulatory Arrest Global Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ginsberg MD. Animal models of global and focal cerebral ischemia. In: Welsh KMA, Caplan LC, Reis DJ, Siesjo BK, Weir B, eds. Primer on Cerebrovascular Disease. San Diego: Academic Press, 1997:124–126.CrossRefGoogle Scholar
  2. 2.
    F ssler R, Martin K, Forsberg E et al. Knockout mice: how to make them and why. The immonological approach. Int Arch Allergy Immunol 1995; 196:323–334.Google Scholar
  3. 3.
    Majzoub JA, Muglia LJ. Knockout mice. N Engl J Med 1996; 334:904–907.PubMedCrossRefGoogle Scholar
  4. 4.
    Rubin EM, Barsh GS. Biological insights through genomics: mouse to man. J Clin Invest 1996; 97:275–280.PubMedCrossRefGoogle Scholar
  5. 5.
    Thomas KR. The knockout mouse: six yeras old and growing stronger. Am J Respir Cell Mol Biol 1995; 12:461–463.PubMedCrossRefGoogle Scholar
  6. 6.
    Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982; 11:491–498.PubMedCrossRefGoogle Scholar
  7. 7.
    Fujii M, Hara H, Meng W et al. Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and CC57/balck/6 mice. Stroke 1997; 28:1805–1811.PubMedCrossRefGoogle Scholar
  8. 8.
    Tamura A, Graham DI, McCulloch J et al. Focal cerebral ischemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60.Google Scholar
  9. 9.
    Tamura A, Graham DI, McCulloch J et al. Focal cerebral ischemia in the rat. 2. Regional cerebral bloow flow determined by [14C]iodoantopyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:61–69.Google Scholar
  10. 10.
    Belayev L, Busto R, Zhao W et al. HU-211, a novel noncompetitive N-methyl-D aspartate antagonist, improves neurological deficit and reduces infarct volume after reversible focal cerebral ischemia in the rat. Stroke 1995; 26:2313–2320.PubMedCrossRefGoogle Scholar
  11. 11.
    Brint S, Jacewicz M, Kiessling M et al. Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral artery and ipsilateral common carotid arteries. J Cereb Blood Flow Metab 1988; 8:474–485.PubMedCrossRefGoogle Scholar
  12. 12.
    Hara H, Huang PL, Panahian N et al. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab 1996; 16:605–611.PubMedCrossRefGoogle Scholar
  13. 13.
    Hallenbeck JM, Dutka AJ. Background review and current concept of reperfusion injury. Arch Neurol 1990; 47:1245–1254.PubMedCrossRefGoogle Scholar
  14. 14.
    Ames A III, Wright RL, Kowada M et al. Cerebral ischemia II. the no-reflow phenomenon. Am J Pathol 1968; 52:437–453.PubMedGoogle Scholar
  15. 15.
    Murakami K, Kondo T, Chan PH. Reperfusion following focal cerebral ischemia alters distribution of neuronal cells with DNA fragmentation in mice. Brain Res 1997; 751:160–164.PubMedCrossRefGoogle Scholar
  16. 16.
    Leist M, Vollbracht C, K hnle S et al. Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Mol Med 1997; 3:750–764.PubMedGoogle Scholar
  17. 17.
    Bonfoco E, Kraine D, Ankarcrona M et al. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/ superoxide in cortical cell cultures. Proc Natl Acad Sci USA 1995; 92:72162–72166.CrossRefGoogle Scholar
  18. 18.
    Du C, Hu R, Csernansky CA, Hsu C et al. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Met 1996; 16:195–201.CrossRefGoogle Scholar
  19. 19.
    Endres M, Namura S, Shimizu-Sasamata M et al. Attenuation of delayed neuronal death after mild focal cerebral ischemia in mice by inhibitors of the caspase family. J Cereb Blood Flow Metab 1998; 18:238–247.PubMedCrossRefGoogle Scholar
  20. 20.
    Fink K, Zhu J, Namura S et al. Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J Cereb Blood Flow Metab 1998; 18:1071–1076.PubMedCrossRefGoogle Scholar
  21. 21.
    Dawson VL, Kizushi VM, Huang PL et al. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 1996: 16:2479–2487.PubMedGoogle Scholar
  22. 22.
    Rothman S. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 1984; 4:1884–1891.PubMedGoogle Scholar
  23. 23.
    Harms H, Wiegand F, Megow D et al. Acute treatment of hypertension increases infarct size in spontaneously hypertensive rats. Neuroreport 2000; 11:355–359.PubMedCrossRefGoogle Scholar
  24. 24.
    Dimagl U, ladecola C, Moskowitz MA. Pathobiology of ischaemic stroke. An integrated view. Trends Neurosci 1999; 22:391–397.CrossRefGoogle Scholar
  25. 25.
    Martin RL, Lloyd HG, Cowan Al. The early events of oxygen and glucose deprivation: Setting the scence for neuronal death? Trends Neurosci 1994; 17:251–2578.PubMedCrossRefGoogle Scholar
  26. 26.
    Choi DW. Ischemia-induced neuronal apoptosis. Curr Opinion Neurobiol 1996; 8:667–672.CrossRefGoogle Scholar
  27. 27.
    Chen H, Chopp MN, Vande Linde MQV et al. The effects of post-ischemic hypothermia on the neuronal injury and brain metabolism after forebrain ischemia in the rat. J Neurol Sci 1992; 107:191–198.PubMedCrossRefGoogle Scholar
  28. 28.
    Furukawa K, Fu W, Li Y et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci 1997; 17:8178–8186.PubMedGoogle Scholar
  29. 29.
    Endres M, Fink KB, Zhu J et al. Neuroprotective effects of gelsolin during murine stroke. J Clin Invest 1999; 103:347–354.PubMedCrossRefGoogle Scholar
  30. 30.
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1997; 271:C1424–1437.Google Scholar
  31. 31.
    ladecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 1997; 1997; 20:132–139.CrossRefGoogle Scholar
  32. 32.
    Dalkara T, Moskowitz MA. The complex role of nitric oxide in the pathophysiology of focal cerebral ischemia. Brain Pathol 1994; 4:49–57.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang J, Dawson VL, Dawson TM. Nitric oxide activation of poly(ADP-ribose)synthetease in neurotoxicity. Science 1994; 263:687–689.PubMedCrossRefGoogle Scholar
  34. 34.
    Szabo C, Zingarelli B, O«Connor M et al. DNA strand breakage, activation of poly(ADPribose)synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci 1996; 93:1753–1758.PubMedCrossRefGoogle Scholar
  35. 35.
    Endres M, Wang Z-Q, Namura S et al. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blod Flow Metab 1997; 17:1143–1151.CrossRefGoogle Scholar
  36. 36.
    Eliasson MJL, Sampei K, Mandir AS et al. Poly(ADP-ribose)polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med 1997; 3:1089–1095.PubMedCrossRefGoogle Scholar
  37. 37.
    Endres M, Scott GS, Namura S et al. Role of perosynitrite and neuronal nitric oxide synthase in the activation of poly(ADP-ribose)synthetase, against peroxynitrite-induced glial damage and stroke development. Neurosci Lett 1998; 248:41–44.PubMedCrossRefGoogle Scholar
  38. 38.
    Huang PL, Huang Z, Mashimo H et al. Hypertension in mice lacking the gene for endothelial nitric oxide snythase. Nature 1995; 377:239–242.CrossRefGoogle Scholar
  39. 39.
    Huang Z, Huang PL, Ma J et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb. Blood Flow Metab 1996; 16:981–987.PubMedCrossRefGoogle Scholar
  40. 40.
    Endres M, Laufs U, Huang Z. Stroke protection by 3-hydroxy-3 methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide snythase. Proc Natl Acad Sci USA 1998; 95:8880–8885.PubMedCrossRefGoogle Scholar
  41. 41.
    Laufs U, Gertz K, Huang PL et al. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from stroke in normocholesterolemic mice. Stroke 31:2437–2449.Google Scholar
  42. 42.
    Dugan LL, Choi DW. Excitotoxicity, free radicals, and cell membrane changes. Ann Neurol 1994; 35 Suppl:S17–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke 1998; 29:705–718.PubMedCrossRefGoogle Scholar
  44. 44.
    Fujimura M, Morita-Fujimura Y, Murakami K et al. Cytosolic redristribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1998; 18:1239–1247.PubMedCrossRefGoogle Scholar
  45. 45.
    Siesj BK, Kristian T, Katsura. In: Ginsberg MD, Bogousslaysky J, Eds. Cerebrovascular Disease. Blackwell Science, 1998:1–13.Google Scholar
  46. 46.
    Hossmann KA. Periinfarct depolarizations. Cerebrovasc Brain Metab Rev 1996; 8:195–208.PubMedGoogle Scholar
  47. 47.
    Obrenovitch TP. The ischaemic penumbra: Twenty years on. Cerebrovasc Brain Metab Rev 1995; 7:297–323.PubMedGoogle Scholar
  48. 48.
    Astrup J,Siesjo BK, Symon L. Thresholds in cerebral ischemia The ischemic penumbra. Stroke 1981; 12:723–725.PubMedCrossRefGoogle Scholar
  49. 49.
    Furlan M, Marchal G, Viader F et al. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 1996; 40:216–226.PubMedCrossRefGoogle Scholar
  50. 50.
    Read SJ, Hirano T, Abbott DF et al. Identifying hypoxie tissue after acute ischemic stroke using PET and I8F-fluoromisonidazole. Neurology 1998; 51:1617–1621.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaufmann AM, Firlik AD, Fukui MB et al. Ischemic core and penumbra in human stroke. Stroke 1999; 30:93–99.PubMedCrossRefGoogle Scholar
  52. 52.
    Deutsch SI, Huntzinger JA, Rosse RB et al. The role of excitatory amino acids and intraneuronal calcium in the acute intoxicational effects of ethanol. Clin Neuropharmacol 1989; 12:1–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1989; 244:1360–1362.PubMedCrossRefGoogle Scholar
  54. 54.
    Turski L, Huth A, Sheardown M et al. ZK20075: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc Natl Acad Sci USA 1998; 95:10960–10965.PubMedCrossRefGoogle Scholar
  55. 55.
    Bond A, O«Neill MJ, Hicks et al. Neuroprotective effects of a systemically active group II metabotropic glutatmate receptor agonist LY354740 in a gerbil model of global ischemia. Neuroreport 1998; 9:1191–1193.PubMedCrossRefGoogle Scholar
  56. 56.
    Nedergaard M, Hansen AJ. Characterization of cortical depolarizations evoked in focal cerebral ischemia. J Cereb Blood Flow Metab 1993; 13:568–574.PubMedCrossRefGoogle Scholar
  57. 57.
    Haring HP, Berg EL, Tsurushita N et al. E-selectin apperas in nonischemic tissue during experimental focal ischemia. Stroke 1996; 27:1386–1391.PubMedCrossRefGoogle Scholar
  58. 58.
    Mies G, Iijima T, Hossmann KA. Correlation between peri-infarct DC shift and ischaemic neuronal damage in rat. NeuroReport 1993; 4:709–711.PubMedCrossRefGoogle Scholar
  59. 59.
    lijima T, Mies G, Hossmann KA. Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: Effect on volume of ischemic injury. J Cereb Blood Flow Metab 1992; 12:727–733.CrossRefGoogle Scholar
  60. 60.
    Back T, Hirsch JG, Szabo K et al. Failure to demonstrate peri-infarct depolarizations by repetitive MR diffusion imaging in acute human stroke. Stroke 2000; 31:2901–2906.PubMedCrossRefGoogle Scholar
  61. 61.
    Neill LA, Kaltschmidt. NF-kappa B: A crucial transcription factor for glial and neuronal cell function. Trends Neurosci 1997; 20:252–258.CrossRefGoogle Scholar
  62. 62.
    Ruscher K, Isaev N, Trendelenburg G et al. Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons. Neurosci Lett 1998; 254:117–120.PubMedCrossRefGoogle Scholar
  63. 63.
    Iadecola C, Zhan F, Casey R et al. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 1997; 17:9157–9164.PubMedGoogle Scholar
  64. 64.
    Lindsberg PJ, Carpen O, Paetau A et al. Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation 1996, 94:939–945.PubMedCrossRefGoogle Scholar
  65. 65.
    Pirttil TR, Kauppinen RA. Recovery of intracellular pH in cortical brain slices following anoxia studied by nuclear magnetic resonance spectroscopy: Role of lactate removal, extracellular sodium and sodium/hydrogen exchange. Neurosci 1992; 47:155–164.CrossRefGoogle Scholar
  66. 66.
    Gong C, Qin Z, Betz AL et al. Cellular localization of tumor necrosis factor alpha following focal cerebral ischemia in mice. Brain Res 1998; 801:1–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Feuerstein GZ, Wang X, Barone FC. Pathophysiology, diagnosis and management. In: Ginsberg MD, Bogousslaysky J, Eds. Cerebrovascular Disease. Malden: Blackwell Science, 1998:507–531.Google Scholar
  68. 68.
    Chopp M, Li Y, Jiang N et al. Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J Cereb Blood Flow Metab 1996; 16:578–584.PubMedCrossRefGoogle Scholar
  69. 69.
    Dereski MO, Chopp M, Knight et al. the heterogenous evolution of focal ischemic neuronal damage in the rat. Acta Neuropathologica Berl 1993; 85:327–333.Google Scholar
  70. 70.
    Baird AE, Benfield A, Schlaug G et al. Enlargment of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 1997; 41:581–589.PubMedCrossRefGoogle Scholar
  71. 71.
    Iadecola C, Niwa K, Nogawa S et al. Reduced susceptibility to ischemic brain injury and Nmethyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc Natl Acad Sci USA 2001; 98:1294–1299.PubMedCrossRefGoogle Scholar
  72. 72.
    Barone FC Arvin B, White RF et al. Tumor necrosis factor-alpha. a mediator of focal ischemic brain injury. Stroke 1997; 28:1233–1244.PubMedCrossRefGoogle Scholar
  73. 73.
    Bruce AJ, Boling W, Kindy MS et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996; 2:788–794.PubMedCrossRefGoogle Scholar
  74. 74.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenen with wide-ranging implication in tissue kinetics. Br J Cancer 1972; 26:239.PubMedCrossRefGoogle Scholar
  75. 75.
    Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 1993; 24:2002–2009.PubMedCrossRefGoogle Scholar
  76. 76.
    Tominaga T, Kure S, Narisawa K et al. Endonuclease activation following focal ischemic injury in the rat. Brain Res 1993; 608:21–26.PubMedCrossRefGoogle Scholar
  77. 77.
    MacManus JP, Buchan AM, Hill IE et al. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 1993; 164:89–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146:3–15.PubMedGoogle Scholar
  79. 79.
    MacManus JP, Hill IE, Huang ZG et al. DNA damage consistent with apoptosis in transient focal ischaemic cortex. NeuroReport 1994; 5:493–496.PubMedCrossRefGoogle Scholar
  80. 80.
    MacManus JP, Hill IE, Preston E et al. Differences in DNA fragmentation following transient cerebral or decapitation ischemia in rats. J Cereb Blood Flow Metab 1995; 15:728737.Google Scholar
  81. 81.
    Charriaut-Marlangue C, Margaill I, Plotkine M et al. Early endonuclease activation following reversible focal ischemia in the rat brain. J Cereb Blood Flow Metab 1995; 15:385–388.PubMedCrossRefGoogle Scholar
  82. 82.
    Charriaut-Marlangue C, Margaill I, Represa A et al. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Met 1996; 16:186–194.CrossRefGoogle Scholar
  83. 83.
    Li Y, Chopp M, Jiang N et al. In situ detection of DNA fragmentation after focal cerebral ischemia in mice. Mol Brain Res 1995; 28:164–168.PubMedCrossRefGoogle Scholar
  84. 84.
    Li Y, Chopp M, Jiang N et al. Induction of DNA fragmentation after 10 to 120 min of focal cerebral ischemia in rats. Stroke 1995; 26:1252–1258.PubMedCrossRefGoogle Scholar
  85. 85.
    van Lookeren Campagne M, Gill R. Ultrastructural morphological changes are not characteristic of apoptototic cell death following focal cerebral ischaemia in the rat. Neurosci Lett 1996; 213:111–114.PubMedCrossRefGoogle Scholar
  86. 86.
    Ameisen JC. The origin of programmed cell death. Science1996; 27:1278–1279.CrossRefGoogle Scholar
  87. 87.
    Bredesen DE (1995) Neural apoptosis. Ann Neurol 1995; 38:839–851.PubMedCrossRefGoogle Scholar
  88. 88.
    Hockenberry D. Defining apoptosis. Am J Pathol 1995; 146:16–19.Google Scholar
  89. 89.
    Raff MC, Barres BA, Burne JF et al. Programmed cell death and the control of cell survival: Lessons from the nervous system. Science 1993; 262:695–700.PubMedCrossRefGoogle Scholar
  90. 90.
    Chinaiyan Am, O Rourke K, Lane Bret al. Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death.Science 1997; 275:1122–1126.CrossRefGoogle Scholar
  91. 91.
    Ellis HM, Horvitz HR. Genetic control of programmmed cell death in the nematode C. elegans. Cell 1986; 44:817–829.PubMedCrossRefGoogle Scholar
  92. 92.
    Ellis HM, Yuan J, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991; 7:663–698.PubMedCrossRefGoogle Scholar
  93. 93.
    Wu DG, Wallen WD, Nunez G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 1997; 275:1126–1129.PubMedCrossRefGoogle Scholar
  94. 94.
    Yuan J, Shaham S, Ledoux S et al.The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75:641–652.PubMedCrossRefGoogle Scholar
  95. 95.
    Alnemri ES, Livingston DJ, Nicholson DW et al..Human ICE/CED-3 protease nomenclature Cell 1996; 87:1712.Google Scholar
  96. 96.
    Redd CJ. Cytochrome c: Can t live it Can t live without it. Cell 1997; 91:559–562.CrossRefGoogle Scholar
  97. 97.
    Namura S, Zhu J, Fink K et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 1998; 18:3659–3668.PubMedGoogle Scholar
  98. 98.
    Friedlander RM, Gagliardini V, Hara H et al. Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal death induced by trophic factor withdrawal and ischemic brain injury. J Exp Med 1997; 185:933–940.PubMedCrossRefGoogle Scholar
  99. 99.
    Schielke GP, Yang GY, Shivers BD et al. Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab 1998; 18:180–185.PubMedCrossRefGoogle Scholar
  100. 100.
    Bara H, Friedlander RM, Gagliardini V et al. Inhibition of interleukin Ibeta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 1997: 94:2007–2012.CrossRefGoogle Scholar
  101. 101.
    Shaw E. Cysteinyl proteinases and their selective inactivation. Adv Enzymol Relat Areas Mol Biol 1990; 63:271–347.PubMedGoogle Scholar
  102. 102.
    Sarin A, Wu ML, Henkart P. Different interleukin-1 beta converting enzyme family protease requirements for the apoptotic death of T lymphocytes triggered by diverse stimuli. J Exp Med 1996; 184:2445–2450.PubMedCrossRefGoogle Scholar
  103. 103.
    Nicholson WD, Ali A, Thornberry NA et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 1995; 376:37–43.PubMedCrossRefGoogle Scholar
  104. 104.
    Nicholson WD, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997; 22:299–306.PubMedCrossRefGoogle Scholar
  105. 105.
    Chen J, Nagayama T, Jin K et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998; 18:4914–4928.PubMedGoogle Scholar
  106. 106.
    Cheng Y, Deskmukh M, D-Costa A et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 1998; 101:1992–1999.PubMedCrossRefGoogle Scholar
  107. 107.
    Ma J, Endres M, Moskowitz MA. Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice. Br J Pharmacol 1998; 124:756762.Google Scholar
  108. 108.
    Minamisawa H, Mellergard P, Smith ML et al. Preservation of brain temperature during ischemia in rats. J Cereb Blood Flow Metab 1990; 10:365–374.PubMedCrossRefGoogle Scholar
  109. 109.
    Busto R, Globus MYT, Dietrich D et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987; 7: 729–738.PubMedCrossRefGoogle Scholar
  110. 110.
    Crumrine RC, LaManna JC. Regional cerebral metabolites, blood flow, plasma volume, and mean transit time in total cerebral ischemia in the rat. J Cereb Blood Flow Metab 1991; 11:272–282.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Matthias Endres
    • 1
  • Ulrich Dirnagl
    • 1
  1. 1.Experimental Neurology, CharitHumboldt-University of BerlinBerlinGermany

Personalised recommendations