Vascular Endothelial Growth Factor

  • Hugo H. Marti
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 513)


The striking structural and anatomical parallels between the vasculature and the nervous system is reflected by the fact that these two organ systems appear to use related mechanisms during their development. Thus, it is not surprising that an increasing number of vascular biologists and researchers in the neuroscience field are fascinated by molecules that play an important role in both systems.


Vascular Endothelial Growth Factor Middle Cerebral Artery Occlusion Vascular Endothelial Growth Factor Gene Vascular Endothelial Growth Factor Family Vascular Permeability Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shima DT, Mailhos C. Vascular developmental biology: Getting nervous. Curr Opin Genet Dev 2000; 10:536–542.CrossRefGoogle Scholar
  2. 2.
    Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost 2000; 26:561–569.PubMedCrossRefGoogle Scholar
  3. 3.
    Breier G. Functions of the VEGF/VEGF receptor system in the vascular system. Semin Thromb Hemost 2000; 26:553–559.PubMedCrossRefGoogle Scholar
  4. 4.
    Tamagnone L, Comoglio PM. Signalling by semaphorin receptors: Cell guidance and beyond. Trends Cell Biol 2000; 10:377–383.PubMedCrossRefGoogle Scholar
  5. 5.
    Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001; 114:853–865.PubMedGoogle Scholar
  6. 6.
    Maglione D, Guerriero V, Viglietto G et al. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 1991; 88:9267–9271.PubMedCrossRefGoogle Scholar
  7. 7.
    Park JE, Chen HH, Winer J et al. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-i/KDR. J Biol Chem 1994; 269:25646–25654.PubMedGoogle Scholar
  8. 8.
    Hatva E, Kaipainen A, Mentula P et al. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 1995; 146:368–378.PubMedGoogle Scholar
  9. 9.
    Nomura M, Yamagishi S, Harada S et al. Placenta growth factor (PIGF) mRNA expression in brain tumors. J Neuro-Oncol 1998; 40:123–130.CrossRefGoogle Scholar
  10. 10.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18:4–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Clauss M. Functions of the VEGF receptor-1 (Flt-1) in the vasculature. Trends Cardiovasc Med 1998; 8:241–245.PubMedCrossRefGoogle Scholar
  12. 12.
    Carmeliet P, Moons L, Luttun A et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med 2001; 7:575–583.PubMedCrossRefGoogle Scholar
  13. 13.
    Olofsson B, Pajusola K, Kaipainen A et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci USA 1996; 93:2576–2581.PubMedCrossRefGoogle Scholar
  14. 14.
    Olofsson B, Korpelainen E, Pepper MS et al. Vascular endothelial growth-factor B (VEGFB) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 1998; 95:11709–11714.PubMedCrossRefGoogle Scholar
  15. 15.
    Lagercrantz J, Farnebo F, Larsson C et al. A comparative study of the expression patterns for vegf vegf-b/vrf and vegf-c in the developing and adult mouse. BiochimBiophys Acta 1998; 1398:157–163.CrossRefGoogle Scholar
  16. 16.
    Joukov V, Pajusola K, Kaipainen A et al. A novel vascular endothelial growth factor, VEGFC, is a ligand for the flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15:290–298.PubMedGoogle Scholar
  17. 17.
    Joukov V, Sorsa T, Kumar V et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 1997; 16:3898–3911.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee J, Gray A, Yuan J et al. Vascular endothelial growth factor-related protein: A ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci USA 1996; 93:1988–1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeltsch M, Kaipainen A, Joukov V et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276:1423–1425.PubMedCrossRefGoogle Scholar
  20. 20.
    Witzenbichler B, Asahara T, Murohara T et al. Vascular endothelial growth factor-C (VEGFC/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 1998; 153:381–394.PubMedCrossRefGoogle Scholar
  21. 21.
    Enholm B, Jussila L, Karkkainen M et al. Vascular endothelial growth factor-C: A growth factor for lymphatic and blood vascular endothelial cells. Trends Cardiovasc Med 1998; 8:292–297.PubMedCrossRefGoogle Scholar
  22. 22.
    Cao Y, Linden P, Farnebo J et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl. Acad Sci USA 1998; 95:14389–14394.CrossRefGoogle Scholar
  23. 23.
    Dumont DJ, Jussila L, Taipale J et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282:946–949.PubMedCrossRefGoogle Scholar
  24. 24.
    Achen MG, Jeltsch M, Kukk E et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (F1t4). Proc Natl Acad Sci USA 1998; 95:548–553.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamada Y, Nezu J, Shimane M et al. Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics 1997; 42:483–488.PubMedCrossRefGoogle Scholar
  26. 26.
    Lyttle DJ, Fraser KM, Fleming SB et al. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 1994; 68:84–92.PubMedGoogle Scholar
  27. 27.
    Ogawa S, Oku A, Sawano A et al. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 1998; 273:31273–31282.PubMedCrossRefGoogle Scholar
  28. 28.
    Meyer M, Clauss M, Lepple-Wienhues A et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 1999; 18:363–374.PubMedCrossRefGoogle Scholar
  29. 29.
    Wise LM, Veikkola T, Mercer AA et al. Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci USA 1999; 96:3071–3076.PubMedCrossRefGoogle Scholar
  30. 30.
    Ogunshola 00, Stewart WB, Mihalcik V et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Develop Brain Res 2000; 119:139–153.CrossRefGoogle Scholar
  31. 31.
    Neufeld G, Cohen T, Gengrinov itch S et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13:9–22.PubMedGoogle Scholar
  32. 32.
    Senger DR, Galli SJ, Dvorak AM et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219:983–985.PubMedCrossRefGoogle Scholar
  33. 33.
    Keck PJ, Hauser SD, Krivi G et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246:1309–1312.PubMedCrossRefGoogle Scholar
  34. 34.
    Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA 1998; 95:15809–15814.PubMedCrossRefGoogle Scholar
  35. 35.
    Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380:435–439.PubMedCrossRefGoogle Scholar
  36. 36.
    Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380:439–442.PubMedCrossRefGoogle Scholar
  37. 37.
    Soker S, Takashima S, Miao HQ et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92:735–745.PubMedCrossRefGoogle Scholar
  38. 38.
    Gluzman-Poltorak Z, Cohen T, Herzog Y et al. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J Biol Chem 2000; 275:18040–18045.PubMedCrossRefGoogle Scholar
  39. 39.
    Fong G-H, Rossant J, Gertsenstein M et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376:66–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in flk-l-deficient mice. Nature 1995; 376:62–66.PubMedCrossRefGoogle Scholar
  41. 41.
    Kawasaki T, Kitsukawa T, Bekku Y et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999; 126:4895–4902.PubMedGoogle Scholar
  42. 42.
    Breier G, Albrecht U, Sterrer S et al. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 1992; 114:521–532.PubMedGoogle Scholar
  43. 43.
    Marti HH, Risau W. Angiogenesis in ischemic disease. Thromb Haemost 1999; 82 (Suppl.):44–52.PubMedGoogle Scholar
  44. 44.
    Ryuto M, Ono M, Izumi H et al. Induction of vascular endothelial growth factor by tumor necrosis factor a in human glioma cells. Possible roles of SP-1. J Biol Chem 1996; 271:28220–28228.PubMedCrossRefGoogle Scholar
  45. 45.
    Stavri GT, Zachary IC, Baskerville PA et al. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic action with hypoxia. Circulation 1995; 92:11–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Shweiki D, Neeman M, Itin A et al. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: Implications for tumor angiogenesis. Proc Natl Acad Sci USA 1995; 92:768–772.PubMedCrossRefGoogle Scholar
  47. 47.
    Shweiki D, Itin A, Soffer D et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359:843–845.PubMedCrossRefGoogle Scholar
  48. 48.
    Plate KH, Breier G, Weich HA et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359:845–848.PubMedCrossRefGoogle Scholar
  49. 49.
    Forsythe JA, Jiang B-H, lyer NV et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16:4604–4613.PubMedGoogle Scholar
  50. 50.
    Ema M, Taya S, Yokotani N et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor la regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 1997; 94:4273–4278.PubMedCrossRefGoogle Scholar
  51. 51.
    Ikeda E, Achen MG, Breier G et al. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor (VEGF) in C6 glioma cells. J Biol Chem 1995; 270:19761–19766.PubMedCrossRefGoogle Scholar
  52. 52.
    Stein I, Itin A, Einat P et al. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: Implications for translation under hypoxia. Mol Cell Biol 1998; 18:3112–3119.PubMedGoogle Scholar
  53. 53.
    Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 2000; 203:1253–1263.PubMedGoogle Scholar
  54. 54.
    Semenza GL. HIF-1 and human disease: One highly involved factor. Genes Dev 2000; 14:1983–1991.PubMedGoogle Scholar
  55. 55.
    Tian H, McKnight SL, Russell DW. Endothelial pas domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11:72–82.PubMedCrossRefGoogle Scholar
  56. 56.
    Flamme I, Fr hlich T, von Reutem M et al. HRF, a putative basic helix-loop-helix-PASdomain transcription factor is closely related to hypoxia-inducible factor-la and developmentally expressed in blood vessels. Mech Develop 1997; 63:51–60.CrossRefGoogle Scholar
  57. 57.
    Hogenesch JB, Chan WK, Jackiw VII et al. Characterization of a subset of the basic-helixloop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 1997; 272:8581–8593.PubMedCrossRefGoogle Scholar
  58. 58.
    Maltepe E, Keith B, Arsham AM et al. The role of ARNT2 in tumor angiogenesis and the neural response to hypoxia. Biochem Biophys Res Commun 2000; 273:231–238.PubMedCrossRefGoogle Scholar
  59. 59.
    Wenger RH, Rolfs A, Marti HH et al. Nucleotide sequence, chromosomal assignment and mRNA expression of mouse hypoxia-inducible factor-la. Biochem Biophys Res Commun 1996; 223:54–59.PubMedCrossRefGoogle Scholar
  60. 60.
    Wenger RH, Kvietikova I, Rolfs A et al. Hypoxia-inducible factor-la is regulated at the post-mRNA level. Kidney Int 1997; 51:560–563.PubMedCrossRefGoogle Scholar
  61. 61.
    Maxwell PH, Wiesener MS, Chang GW et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399:271–275.PubMedCrossRefGoogle Scholar
  62. 62.
    Ivan M, Kondo K, Yang HF et al. HIFa targeted for VHL-mediated destruction by proline hydroxylation: Implications for 02 sensing. Science 2001; 292:464–468.PubMedCrossRefGoogle Scholar
  63. 63.
    Jaakkola P, Mole DR, Tian YM et al. Targeting of HIF a to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292:468–472.PubMedCrossRefGoogle Scholar
  64. 64.
    Talks KL, Turley H, Gatter KC et al. The expression and distribution of the hypoxia-inducible factors HIF-la and HIF-2a in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157:411–421.PubMedCrossRefGoogle Scholar
  65. 65.
    Chavez JC, Agani F, Pichiule P et al. Expression of hypoxia-inducible factor-la in the brain of rats during chronic hypoxia. J Appl Physiol 2000; 89:1937–1942.PubMedGoogle Scholar
  66. 66.
    Bergeron M, Yu AY, Solway KE et al. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 1999; 11:4159–4170.PubMedCrossRefGoogle Scholar
  67. 67.
    Jin KL, Mao XO, Nagayama T et al. Induction of vascular endothelial growth factor and hypoxia-inducible factor-la by global ischemia in rat brain. Neuroscience 2000; 99:577–585.PubMedCrossRefGoogle Scholar
  68. 68.
    Marti HJH, Bernaudin M, Bellail A et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 2000; 156:965–976.PubMedCrossRefGoogle Scholar
  69. 69.
    Papavassiliou E, Gogate N, Proescholdt M et al. Vascular endothelial growth factor (vascular permeability factor) expression in injured rat brain. J Neurosci Res 1997; 49:451–460.PubMedCrossRefGoogle Scholar
  70. 70.
    Bartholdi D, Rubin BP, Schwab ME. VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat. Eur J Neurosci 1997; 9:2549–2560.PubMedCrossRefGoogle Scholar
  71. 71.
    Sk Id M, Cullheim S, Hammarberg H et al. Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. Eur J Neurosci 2000; 12:3675–3686.CrossRefGoogle Scholar
  72. 72.
    Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/flk and flt in lungs exposed to acute or chronic hypoxia, Modulation of gene expression by nitric oxide. J Clin Invest 1995; 95:1798–1807.PubMedCrossRefGoogle Scholar
  73. 73.
    Jin KL, Mao XO, Nagayama T et al. Induction of vascular endothelial growth factor receptors and phosphatidylinositol 3 -kinase/Akt signaling by global cerebral ischemia in the rat. Neuroscience 2000; 100:713–717.PubMedCrossRefGoogle Scholar
  74. 74.
    Gerber H-P, Condorelli F, Park J et al. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes; flt-1, but not flk- 1/KDR, is up-regulated by hypoxia. J Biol Chem 1997; 272:23659–23667.PubMedCrossRefGoogle Scholar
  75. 75.
    Li J, Brown LF, Hibberd MG et al. VEGF, Jik-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 1996; 270:H1803–H1811.PubMedGoogle Scholar
  76. 76.
    Kappel A, R nicke V, Damert A et al. Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 1999; 93:4284–4292.PubMedGoogle Scholar
  77. 77.
    Kremer C, Breier G, Risau W et al. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 1997; 57:3852–3859.PubMedGoogle Scholar
  78. 78.
    Shen B-Q, Lee DY, Gerber H-P et al. Homologous up-regulation of KDR/FIk-1 receptor expression by vascular endothelial growth factor in vitro. J Biol Chem 1998; 273:29979–29985.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang ZG, Tsang W, Zhang L et al. Up-regulation of neuropilin-1 in neovasculature after focal cerebral ischemia in the adult rat. J Cereb Blood Flow Metab 2001; 21:541–549.PubMedCrossRefGoogle Scholar
  80. 80.
    Gleadle JM, Ebert BL, Firth JD et al. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol 1995; 268:C1362–C1368.PubMedGoogle Scholar
  81. 81.
    Enholm B, Paavonen K, Ristimaki A et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 m-RNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997; 14:2475–2483.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhu H, Bunn HF. How do cells sense oxygen? Science 2001; 292:449–451.PubMedCrossRefGoogle Scholar
  83. 83.
    Lennmyr F, Ata KA, Funa K et al. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol 1998; 57:874–882.PubMedCrossRefGoogle Scholar
  84. 84.
    Yang XJ, Cepko CL. Flk-1, a receptor for vascular endothelial growth-factor (VEGF), is expressed by retinal progenitor cells. J Neurosci 1996; 16:6089–6099.PubMedGoogle Scholar
  85. 85.
    Rosenstein JM, Mani N, Silverman WF et al. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sei USA 1998; 95:7086–7091.CrossRefGoogle Scholar
  86. 86.
    Krum JM, Rosenstein JM, VEGF mRNA and its receptor Jit-I are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol 1998; 154:57–65.PubMedCrossRefGoogle Scholar
  87. 87.
    Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 1999; 19:5731–5740.PubMedGoogle Scholar
  88. 88.
    Silverman WF, Krum JM, Mani N et al. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 1999; 90:1529–1541.PubMedCrossRefGoogle Scholar
  89. 89.
    Temburni MK, Jacob MH. New functions for glia in the brain. Proc Natl Acad Sci USA 2001; 98:3631–3632.PubMedCrossRefGoogle Scholar
  90. 90.
    Robinson GS, Ju M, Shih S-C, Xu X, Mcmahon G, Caldwell R, Smith LEH. Nonvascular role for VEGF:VEGFR-1, 2 activity is critical for neural retinal development. FASEB J (March 20, 2001) I0.1096/ü1.00–0598ü1e.Google Scholar
  91. 91.
    Yourey PA, Gohari S, Su JL et al. Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells. J Neurosci 2000; 20:6781–6788.PubMedGoogle Scholar
  92. 92.
    lin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 2000; 97:10242–10247.CrossRefGoogle Scholar
  93. 93.
    Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: Signal transduction cascades. FASEB J (March 12, 2001) 10.1096/1.00–0495ü1e.Google Scholar
  94. 94.
    Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 1998; 18:887–895.PubMedCrossRefGoogle Scholar
  95. 95.
    Sondell M, Kanje M. Postnatal expression of VEGF and its receptor flk-1 in peripheral ganglia. Neuroreport 2001; 12:105–108.PubMedCrossRefGoogle Scholar
  96. 96.
    Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res 1999; 846:219–228.PubMedCrossRefGoogle Scholar
  97. 97.
    Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 2000; 12:4243–4254.PubMedCrossRefGoogle Scholar
  98. 98.
    Schratzberger P, Schratzberger G, Silver M et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nature Med 2000; 6:405–413.PubMedCrossRefGoogle Scholar
  99. 99.
    Schratzberger P, Walter DH, Rittig K et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001; 107:1083–1092.PubMedCrossRefGoogle Scholar
  100. 100.
    Oosthuyse B, Moons L, Storkebaum E et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001; 28:131–138.PubMedCrossRefGoogle Scholar
  101. 101.
    Bagnard D, Vaillant C, Khuth S-T et al. Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 2001; 21:3332–3341.PubMedGoogle Scholar
  102. 102.
    Fuh G, Garcia KC, de Vos AM. The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor Flt-1. J Biol Chem 2000; 275:26690–26695.PubMedGoogle Scholar
  103. 103.
    Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995; 11:73–91.PubMedCrossRefGoogle Scholar
  104. 104.
    Asahara T, Takahashi T, Masuda H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18:3964–3972.PubMedCrossRefGoogle Scholar
  105. 105.
    Risau W. Mechanisms of angiogenesis. Nature 1997; 386:671–674.PubMedCrossRefGoogle Scholar
  106. 106.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1:27–31.PubMedCrossRefGoogle Scholar
  107. 107.
    Buschmann I, Schaper W. Arteriogenesis versus angiogenesis: Two mechanisms of vessel growth. News Physiol Sei 1999; 14:121–125.Google Scholar
  108. 108.
    Hank SI, Hritz MA, LaManna JC. Hypoxia-induced brain angiogenesis in the adult rat. J Physiol (London) 1995; 485:525–530Google Scholar
  109. 109.
    Boero JA, Ascher J, Arregui A et al. Increased brain capillaries in chronic hypoxia. J Appl Physiol 1999; 86:1211–1219.PubMedGoogle Scholar
  110. 110.
    LaManna JC, Harik SI. Brain metabolic and vascular adaptations to hypoxia in the rat. Adv Exp Med Biol 1997; 428:163–167.PubMedCrossRefGoogle Scholar
  111. 111.
    Kuo N-T, Benhayon D, Przybylski RJ et al. Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain. J Appl Physiol 1999; 86:260–264.PubMedGoogle Scholar
  112. 112.
    Marti HH, Bernaudin M, Petit E et al. Neuroprotection and angiogenesis: A dual role of erythropoietin in brain ischemia. News Physiol Sci 2000; 15:225–229.PubMedGoogle Scholar
  113. 113.
    Greenberg DA. Angiogenesis and stroke. Drug News Perspect 1998; 11:265–270.PubMedCrossRefGoogle Scholar
  114. 114.
    Ment LR, Stewart WB, Fronc R et al. Vascular endothelial growth factor mediated reactive angiogenesis in the postnatal developing brain. Develop Brain Res 1997; 100:52–61.CrossRefGoogle Scholar
  115. 115.
    van Bruggen N, Thibodeaux H, Palmer JT et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999; 104:1613–1620.PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang ZG, Zhang L, Jiang Q et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106:829–838.PubMedCrossRefGoogle Scholar
  117. 117.
    Eliceiri BP, Paul R, Schwartzberg PL et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4:915–924.PubMedCrossRefGoogle Scholar
  118. 118.
    Paul R, Zhang ZG, Eliceiri BP et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nature Med 2001; 7:222–227.PubMedCrossRefGoogle Scholar
  119. 119.
    Gerber HP, McMurtrey A, Kowalski J et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273:30336–30343.PubMedCrossRefGoogle Scholar
  120. 120.
    Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J Mol Neurosci 2000; 14:197–203.PubMedCrossRefGoogle Scholar
  121. 121.
    Kalaria RN, Cohen DL, Premkumar DRD et al. Vascular endothelial growth factor in Alzheimer s disease and experimental cerebral ischemia. Mol Brain Res 1998; 62:101–105.PubMedCrossRefGoogle Scholar
  122. 122.
    Thurston G, Rudge JS, Ioffe E et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Med 2000; 6:460–463.PubMedCrossRefGoogle Scholar
  123. 123.
    Celletti FL, Waugh JM, Amabile PG et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Med 2001; 7:425–429.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Hugo H. Marti
    • 1
    • 2
  1. 1.Max-Planck-Institute for Physiological and Clinical ResearchBad NauheimGermany
  2. 2.Institute of PhysiologyUniversity of Z richZrichSwitzerland

Personalised recommendations