Excitatory Amino Acid Neurotoxicity

  • Thomas Gillessen
  • Samantha L. Budd
  • Stuart A. Lipton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 513)


The excitatory potency of the acidic amino acids glutamate and aspartate in various regions of the central nervous system (CNS) has been recognized since the 1960 s.1,2 Nevertheless, the earlier findings that these amino acids are (1) constituents of intermediary metabolism and are (2) located in the brain ubiquitously in high concentrations rendered them unlikely candidates as neurotransmitters. These findings fueled a sustained debate about their physiological role as neurotransmitters in the 1970s. Today, L-glutamate is accepted as the predominant fast excitatory neurotransmitter in the vertebrate brain.


Glutamate Receptor Neuronal Cell Death Excitatory Amino Acid Metabotropic Glutamate Receptor Kainic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Curtis D.R., Watkins J.C. The excitation and depression of spinal neurons by structurally related amino acids. J Neurochem 1960; 6 117–141.CrossRefGoogle Scholar
  2. 2.
    Krnjevic K., Phillis J.W. Actions of certain amines on cerebral cortical neurones. Br J Pharmacol 1963; 20 471–490.Google Scholar
  3. 3.
    Lucas D.R., Newhouse J.P. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophtalmol 1957; 58 193–201.CrossRefGoogle Scholar
  4. 4.
    Olney J.W., Sharpe L.G. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 1969; 166(903):386–388.PubMedCrossRefGoogle Scholar
  5. 5.
    Olney J.W., Ho O.L. Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature 1970; 227(258):609–611.PubMedCrossRefGoogle Scholar
  6. 6.
    Olney J.W. Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol 1971; 30(1):75–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Olney J.W., Sharpe L.G., Feigin R.D. Glutamate-induced brain damage in infant primates. J Neuropathol Exp Neurol 1972; 31(3):464–488.PubMedCrossRefGoogle Scholar
  8. 8.
    Olney JW, Rhee V, Gubareff TD. Neurotoxic effects of glutamate on mouse area postrema. Brain Res 1977; 120(1):151–157.PubMedCrossRefGoogle Scholar
  9. 9.
    Olney JW. Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW, McGeer PL, eds. Kainic acid as a Tool in Neurobiology. New York: Raven, 1978:95–121.Google Scholar
  10. 10.
    Olney JW, Misra CH, de Gubareff T. Cysteine-S-sulfate: Brain damaging metabolite in sulfite oxidase deficiency. J Neuropathol Exp Neurol 1975; 34(2):167–177.PubMedCrossRefGoogle Scholar
  11. 11.
    Coyle JT, Molliver ME, Kuhar MJ. In situ injection of kainic acid: A new method for selectively lesioning neural cell bodies while sparing axons of passage. J Comp Neurol 1978; 180(2):301–323.PubMedCrossRefGoogle Scholar
  12. 12.
    Nadler JV, Perry BW, Cotman CW. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 1978; 271(5646):676–677.PubMedCrossRefGoogle Scholar
  13. 13.
    Schwartz R, Coyle JT. Neurochemical sequelae of kainate injections in corpus striatum and substantia nigra of the rat. Life Sci 1977; 20(3):431–436.CrossRefGoogle Scholar
  14. 14.
    Schwarcz R, Coyle JT. Kainic acid: Neurotoxic effects after intraocular injection. Invest Ophthalmol Vis Sci 1977; 16(2):141–148.PubMedGoogle Scholar
  15. 15.
    Watkins JC, Krogsgaard LP, Honore T. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 1990; 11(1):25–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Greenamyre JT. The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol 1986; 43(10):1058–1063.PubMedCrossRefGoogle Scholar
  17. 17.
    Olney JW, Price MT, Fuller TA et al. The anti-excitotoxic effects of certain anesthetics, analgesics and sedative-hypnotics. Neurosci Lett 1986; 68(1):29–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Schwarcz R, Meldrum B. Excitatory aminoacid antagonists provide a therapeutic approach to neurological disorders. Lancet 1985; 2(8447):140–143.PubMedCrossRefGoogle Scholar
  19. 19.
    Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 1988; 8(1):185–196.PubMedGoogle Scholar
  20. 20.
    Koh JY, Goldberg MP, Hartley DM et al. Non-NMDA receptor-mediated neurotoxicity in cortical culture. J Neurosci 1990; 10 693–705.PubMedGoogle Scholar
  21. 21.
    Michaels RL, Rothman SM. Glutamate neurotoxicity in vitro: Antagonist pharmacology and intracellular calcium concentrations. J Neurosci 1990; 10(1):283–292.PubMedGoogle Scholar
  22. 22.
    Frandsen A, Drejer J, Schousboe A. Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors. J Neurochem 1989; 53(1):297–299.PubMedCrossRefGoogle Scholar
  23. 23.
    Rothman SM, Thurston JH, Hauhart RE. Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience 1987; 22(2):471–480.PubMedCrossRefGoogle Scholar
  24. 24.
    Garthwaite G, Garthwaite J. Amino acid neurotoxicity: intracellular sites of calcium accumulation associated with the onset of irreversible damage to rat cerebellar neurones in vitro. Neurosci Lett 1986; 71(1):53–58.PubMedCrossRefGoogle Scholar
  25. 25.
    Garthwaite G, Hajos F, Garthwaite J. Ionic requirements for neurotoxic effects of excitatory amino acid analogues in rat cerebellar slices. Neuroscience 1986; 18(2):437–447.PubMedCrossRefGoogle Scholar
  26. 26.
    Garthwaite G, Garthwaite J. Differential dependence on Cat+ of N-methyl-D-aspartate and quisqualate neurotoxicity in young rat hippocampal slices. Neurosci Lett 1989; 97(3):316–322.PubMedCrossRefGoogle Scholar
  27. 27.
    Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 1985; 58(3):293–297.PubMedCrossRefGoogle Scholar
  28. 28.
    Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987; 7(2):369–379.PubMedGoogle Scholar
  29. 29.
    Hartley DM, Kurth MC, Bjerkness L et al. Glutamate receptor-induced 45Ca2` accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci 1993; 13(5):1993–2000.PubMedGoogle Scholar
  30. 30.
    Randall RD, Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 1992; 12(5):1882–1895.PubMedGoogle Scholar
  31. 31.
    Dawson VL, Dawson TM, London ED et al. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 1991; 88(14):6368–6371.PubMedCrossRefGoogle Scholar
  32. 32.
    Brorson JR, Manzolillo PA, Miller RJ. Ca2+ entry via AMPAIKA receptors and excitotoxicity in cultured cerebellar Purkinje cells. J Neurosci 1994; 14(1):187–197.PubMedGoogle Scholar
  33. 33.
    Volterra A, Trotti D, Cassutti P et al. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem 1992; 59(2):600–606.PubMedCrossRefGoogle Scholar
  34. 34.
    Olney JW. Inciting excitotoxic cytocide among central neurons. Adv Exp Med Biol 1986; 203:631–645.PubMedCrossRefGoogle Scholar
  35. 35.
    Ingvar M, Morgan PF, Auer RN. The nature and timing of excitotoxic neuronal necrosis in the cerebral cortex, hippocampus and thalamus due to flurothyl-induced status epilepticus. Acta Neuropathol Berl 1988; 75(4):362–369.PubMedCrossRefGoogle Scholar
  36. 36.
    Olney JW. Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 1969; 28(3):455–474.PubMedCrossRefGoogle Scholar
  37. 37.
    Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg 1992; 77(2):169–184Google Scholar
  38. 38.
    Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990; 13 171–182.PubMedCrossRefGoogle Scholar
  39. 39.
    Hahn JS, Aizenman E, Lipton SA. Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2’: Toxicity is blocked by the N-methyl-D-aspartate antagonist MK-801. Proc Natl Acad Sci USA 1988; 85(17):6556–6560.PubMedCrossRefGoogle Scholar
  40. 40.
    Ankarcrona M, Dypbukt JM, Bonfoco E et al. Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15(4):961–973.PubMedCrossRefGoogle Scholar
  41. 41.
    Choi DW. Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 1996; 6(5):667–672.PubMedCrossRefGoogle Scholar
  42. 42.
    Gottron FJ, Ying HS, Choi DW. Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol Cell Neurosci 1997; 9(3):159–169.PubMedCrossRefGoogle Scholar
  43. 43.
    Bonfoco E, Kraine D, Ankarcrona M et al. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/ superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 1995; 92(16):7162–7166.PubMedCrossRefGoogle Scholar
  44. 44.
    Kure S, Tominaga T, Yoshimoto T et al. Glutamate triggers intemucleosomal DNA cleavage in neuronal cells. Biochem Biophys Res Commun 1991; 179(1):39–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1(8):623–634.PubMedCrossRefGoogle Scholar
  46. 46.
    Margerison J11, Corsellis JA. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 1966; 89(3):499–530.PubMedCrossRefGoogle Scholar
  47. 47.
    Sagar HJ, Oxbury JM. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann Neurol 1987; 22(3):334–340.PubMedCrossRefGoogle Scholar
  48. 48.
    Corsellis JA, Bruton CJ. Neuropathology of status epilepticus in humans. Adv Neurol 1983; 34:129–139.PubMedGoogle Scholar
  49. 49.
    Hauser WA. Status epilepticus: Frequency, etiology, and neurological sequelae. Adv Neurol 1983; 343–14.PubMedGoogle Scholar
  50. 50.
    DeGiorgio CM, Tomiyasu U, Gott PS et al. Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia 1992; 33(1):23–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Olney JW, deGubareff T, Sloviter RS. Epileptic brain damage in rats induced by sustained electrical stimulation of the perforant path. II. Ultrastructural analysis of acute hippocampal pathology. Brain Res Bull 1983; 10(5):699–712.PubMedCrossRefGoogle Scholar
  52. 52.
    Turski WA, Cavalheiro EA, Bortolotto ZA et al. Seizures produced by pilocarpine in mice: A behavioral, electroencephalographic and morphological analysis. Brain Res 1984; 321(2):237–253.PubMedCrossRefGoogle Scholar
  53. 53.
    Clifford DB, Olney JW, Maniotis A et al. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 1987; 23(3):953–968.PubMedCrossRefGoogle Scholar
  54. 54.
    Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985; 14(2):375–403.PubMedCrossRefGoogle Scholar
  55. 55.
    Meldrum BS. Cell damage in epilepsy and the role of calcium in cytotoxicity. Adv Neurol 1986; 44 849–855.PubMedGoogle Scholar
  56. 56.
    Olney JW, Collins RC, Sloviter RS. Excitotoxic mechanisms of epileptic brain damage. In: Delgado-Escueta AV, Ward AA, eds. Basic Mechanisms of the Epilepsies. New York: Raven Press, 1986:857–877.Google Scholar
  57. 57.
    Clifford DB, Olney JW, Benz AM et al. Ketamine, phencyclidine, and MK-801 protect against kainic acid-induced seizure-related brain damage. Epilepsia 1990; 31(4):382–390.PubMedCrossRefGoogle Scholar
  58. 58.
    Clifford DB, Zorumski CF, Olney JW. Ketamine and MK-801 prevent degeneration of thalamic neurons induced by focal cortical seizures. Exp Neurol 1989; 105(3):272–279.PubMedCrossRefGoogle Scholar
  59. 59.
    Fariello RG, Golden GT, Smith GG et al. Potentiation of kainic acid epileptogenicity and sparing from neuronal damage by an NMDA receptor antagonist. Epilepsy Res 1989; 3(3):206–213.PubMedCrossRefGoogle Scholar
  60. 60.
    Sparenborg S, Brennecke LH, Jaax NK et al. Dizocilpine (MK-801) arrests status epilepticus and prevents brain damage induced by soman [published erratum appears in Neuropharmacology 1993 Mar;32(3):313]. Neuropharmacology 1992; 31(4):357–368.PubMedCrossRefGoogle Scholar
  61. 61.
    Becker AJ, Gillardon F, Blumcke I et al. Differential regulation of apoptosis-related genes in resistant and vulnerable subfields of the rat epileptic hippocampus. Brain Res Mol Brain Res 1999; 67(1):172–176.PubMedCrossRefGoogle Scholar
  62. 62.
    Charriaut MC, Aggoun ZD, Represa A et al. Apoptotic features of selective neuronal death in ischemia, epilepsy and gp 120 toxicity. Trends Neurosci 1996; 19(3):109–114.CrossRefGoogle Scholar
  63. 63.
    Gillardon F, Bottiger B, Schmitz B et al. Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy. Brain Res Mol Brain Res 1997; 50(1–2):16–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Henshall DC, Chen J, Simon RP. Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochem 2000; 74(3):1215–1223.PubMedCrossRefGoogle Scholar
  65. 65.
    Henshall DC, Clark RS, Adelson PD et al. Alterations in bc1–2 and caspase gene family protein expression in human temporal lobe epilepsy. Neurology 2000; 55(2):250–257.PubMedCrossRefGoogle Scholar
  66. 66.
    Pollard H, Charriaut MC, Cantagrel S et al. Kainate-induced apoptotic cell death in hippocampal neurons. Neuroscience 1994; 63(1):7–18.PubMedCrossRefGoogle Scholar
  67. 67.
    Faden AI, Demediuk P, Panter SS et al. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989; 244(4906):798–800.PubMedCrossRefGoogle Scholar
  68. 68.
    Faden Al, Simon RP. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 1988; 23(6):623–626.PubMedCrossRefGoogle Scholar
  69. 69.
    Bittigau P, Pohl D, Sifringer M et al. Modeling pediatric head trauma: Mechanisms of degeneration and potential strategies for neuroprotection. Restor Neurol Neurosci 1998; 13(1–2):11–23.PubMedGoogle Scholar
  70. 70.
    Shah PT, Yoon KW, Xu XM et al. Apoptosis mediates cell death following traumatic injury in rat hippocampal neurons. Neuroscience 1997; 79(4):999–1004.PubMedCrossRefGoogle Scholar
  71. 71.
    Yakovlev AG, Knoblach SM, Fan L et al. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 1997; 17(19):7415–7424.PubMedGoogle Scholar
  72. 72.
    Pohl D, Bittigau P, Ishimaru MJ et al. N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci U S A 1999; 96(5):2508–2513.PubMedCrossRefGoogle Scholar
  73. 73.
    Hansen Al Effect of anoxia on ion distribution in the brain. Physiol Rev 1985; 65(1):101–148.Google Scholar
  74. 74.
    Hirsch JA, Gibson GE. Selective alteration of neurotransmitter release by low oxygen in vitro. Neurochem Res 1984; 9(8):1039–1049.PubMedCrossRefGoogle Scholar
  75. 75.
    Nicholls D, Attwell D. The release and uptake of excitatory amino acids [see comments]. Trends Pharmacol Sci 1990; 11(11):462–468.PubMedCrossRefGoogle Scholar
  76. 76.
    Szatkowski M, Attwell D. Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci 1994; 17(9):359–365.PubMedCrossRefGoogle Scholar
  77. 77.
    Benveniste H, Drejer J, Schousboe A et al. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984; 43(5):1369–1374.PubMedCrossRefGoogle Scholar
  78. 78.
    Drejer J, Benveniste H, Diemer NH et al. Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 1985; 45(1):145–151.PubMedCrossRefGoogle Scholar
  79. 79.
    Obrenovitch TP Richards DA. Extracellular neurotransmitter changes in cerebral ischaemia. Cerebrovasc Brain Metab Rev 1995; 7(1):1–54Google Scholar
  80. 80.
    Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988; 11(10):465–469.PubMedCrossRefGoogle Scholar
  81. 81.
    Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic Ischemic brain damage. Ann Neurol 1986; 19(2):105–111.PubMedCrossRefGoogle Scholar
  82. 82.
    Rothman S. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 1984; 4(7):1884–1891.PubMedGoogle Scholar
  83. 83.
    Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature 1999; 399(6738 Suppl):A7–14.PubMedCrossRefGoogle Scholar
  84. 84.
    Albers GW, Goldberg MP, Choi DW. Do NMDA antagonists prevent neuronal injury? Yes. Arch Neurol 1992; 49(4):418–420.PubMedCrossRefGoogle Scholar
  85. 85.
    Simon RP, Swan JH, Griffiths T et al. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 1984; 226(4676):850–852.PubMedCrossRefGoogle Scholar
  86. 86.
    Wieloch T. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 1985; 230(4726):681–683.PubMedCrossRefGoogle Scholar
  87. 87.
    Benveniste H. The excitotoxin hypothesis in relation to cerebral ischemia. Cerebrovasc Brain Metab Rev 1991; 3(3):213–245.PubMedGoogle Scholar
  88. 88.
    Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci 1999; 22(9):391–397.PubMedCrossRefGoogle Scholar
  89. 89.
    Martin LI, Al Abdulla NA, Brambrink AM et al. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain-Res Bull 1998; 46(4):281–309.PubMedCrossRefGoogle Scholar
  90. 90.
    Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 1993; 24(12):2002–2008.PubMedCrossRefGoogle Scholar
  91. 91.
    MacManus JP, Buchan AM, Hill IE et al. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 1993; 164(1–2):89–92.PubMedCrossRefGoogle Scholar
  92. 92.
    Namura S, Zhu J, Fink K et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 1998; 18(10):3659–3668.PubMedGoogle Scholar
  93. 93.
    Fink K, Zhu J, Namura S et al. Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J Cereb Blood Flow Metab 1998; 18(10):1071–1076.PubMedCrossRefGoogle Scholar
  94. 94.
    Endres M, Namura S, Shimizu SM et al. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 1998; 18(3):238–247.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen J, Nagayama T, Jin K et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998; 18(13):4914–4928.PubMedGoogle Scholar
  96. 96.
    Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001; 410(6831):988–994.PubMedCrossRefGoogle Scholar
  97. 97.
    Bezzi P, Domercq M, Brambilla L et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001; 4(7):702–710.PubMedCrossRefGoogle Scholar
  98. 98.
    Teitelbaum JS, Zatorre RJ, Carpenter S et al. Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels [see comments]. N Engl J Med 1990; 322(25):1781–1787.PubMedCrossRefGoogle Scholar
  99. 99.
    Biscoe TJ, Evans RH, Headley PM et al. Domoic and quisqualic acids as potent amino acid excitants of frog and rat spinal neurones. Nature 1975; 255(5504):166–167.PubMedCrossRefGoogle Scholar
  100. 100.
    Biscoe Ti, Evans RH, Headley PM et al. Structure-activity relations of excitatory amino acids on frog and rat spinal neurones. Br J Pharmacol 1976; 58(3):373–382.PubMedCrossRefGoogle Scholar
  101. 101.
    Tryphonas L, Iverson F. Neuropathology of excitatory neurotoxins: the domoic acid model. Toxicol Pathol 1990; 18(1 Pt 2):165–169.PubMedGoogle Scholar
  102. 102.
    Tryphonas L, Truelove J, Nera E et al. Acute neurotoxicity of domoic acid in the rat. Toxicol Pathol 1990; 18(1 Pt 1):1–9.PubMedGoogle Scholar
  103. 103.
    Tryphonas L, Truelove J, Iverson F. Acute parenteral neurotoxicity of domoic acid in cynomolgus monkeys (M. fascicularis) [published erratum appears in Toxicol Pathol 1990; 18(3):431]. Toxicol Pathol 1990; 1 8(2):297–303.CrossRefGoogle Scholar
  104. 104.
    Rao SLN, Adiga PR, Sauna PS. Biochemistry 1964; 145:218–5220.Google Scholar
  105. 105.
    Spencer PS, Roy DN, Ludolph A et al. Lathyrism: Evidence for role of the neuroexcitatory aminoacid BOAA. Lancet 1986; 2(8515):1066–1067.PubMedCrossRefGoogle Scholar
  106. 106.
    Nunn PB, Seelig M, Zagoren JC et al. Stereospecific acute neuronotoxicity of uncommon plant amino acids linked to human motor-system diseases. Brain Res 1987; 410(2):375–379.PubMedCrossRefGoogle Scholar
  107. 107.
    Ross SM, Seelig M, Spencer PS. Specific antagonism of excitotoxic action of uncommon amino acids assayed in organotypic mouse cortical cultures. Brain Res 1987; 425(1):120–127.PubMedCrossRefGoogle Scholar
  108. 108.
    Ross SM, Spencer PS. Specific antagonism of behavioral action of uncommon amino acids linked to motor-system diseases. Synapse 1987; l(3):248–253.CrossRefGoogle Scholar
  109. 109.
    Bridges RJ, Stevens DR, Kahle JS et al. Structure-function studies on N-oxalyldiamino-dicarboxylic acids and excitatory amino acid receptors: evidence that beta-L-ODAP is a selective non-NMDA agonist. J Neurosci 1989; 9(6):2073–2079.PubMedGoogle Scholar
  110. 110.
    Ascher P, Nowak L. Quisqualate-and kainate-activated channels in mouse central neurones in culture. J Physiol Lond 1988; 399:227–245.PubMedGoogle Scholar
  111. 111.
    Mosbacher J, Schoepfer R, Monyer H et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 1994; 266(5187):1059–1062.PubMedCrossRefGoogle Scholar
  112. 112.
    Hestrin S, Nicoll RA, Perkel DJ et al. Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J Physiol Lond 1990; 422:203–225.PubMedGoogle Scholar
  113. 113.
    Murphy SN, Miller RJ. Regulation of Ca“ influx into striatal neurons by kainic acid. J Pharmacol Exp Ther 1989; 249(1):184–193.PubMedGoogle Scholar
  114. 114.
    Gilbertson TA, Scobey R, Wilson M. Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science 1991; 251(5001):1613–1615.PubMedCrossRefGoogle Scholar
  115. 115.
    Ogura A, Akita K, Kudo Y. Non-NMDA receptor mediates cytoplasmic Caz+ elevation in cultured hippocampal neurones. Neurosci Res N Y 1990; 9(2):103–113.PubMedCrossRefGoogle Scholar
  116. 116.
    Pruss RM, Akeson RL, Racke MM et al. Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron 1991; 7(3):509–518.PubMedCrossRefGoogle Scholar
  117. 117.
    Jonas P, Racca C, Sakmann B et al. Differences in Caz+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 1994; 12(6):1281–1289.PubMedCrossRefGoogle Scholar
  118. 118.
    Hollmann M, Hartley M, Heinemann S. Caz+ permeability of KA-AMPA Gated glutamate receptor channels depends on subunit composition. Science 1991; 252(5007):851–853.PubMedCrossRefGoogle Scholar
  119. 119.
    Nakanishi N, Shneider NA, Axel R. A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 1990; 5(5):569–581.PubMedCrossRefGoogle Scholar
  120. 120.
    Contractor A, Swanson G, Heinemann SF. Kainate receptors are involved in short-and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 2001; 29(1):209–216.PubMedCrossRefGoogle Scholar
  121. 121.
    Contractor A, Swanson GT, Sailer A et al. Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J Neurosci 2000; 20(22):8269–8278.PubMedGoogle Scholar
  122. 122.
    Ben Ari Y, Cossart R. Kainate, a double agent that generates seizures: Two decades of progress. Trends Neurosci 2000; 23(11):580–587.CrossRefGoogle Scholar
  123. 123.
    Frerking M, Nicoll RA. Synaptic kainate receptors, Curr Opin Neurobiol 2000; 10(3):342–351.PubMedCrossRefGoogle Scholar
  124. 124.
    MacDermott AB, Mayer ML, Westbrook GL et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones [published erratum appears in Nature 1986 Jun 26-Jul 2;321(6073):888]. Nature 1986; 321(6069):519–522.PubMedCrossRefGoogle Scholar
  125. 125.
    Mayer ML, MacDermott AB, Westbrook GL et al. Agonist-and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III. J Neurosci 1987; 7(10):3230–3244.PubMedGoogle Scholar
  126. 126.
    Mayer ML, Westbrook GL. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol Lond 1987; 394:501–527.PubMedGoogle Scholar
  127. 127.
    Ascher P, Nowak L. Electrophysiological studies of NMDA receptors. Trends Neurosci 1987; 10(7):284–288.CrossRefGoogle Scholar
  128. 128.
    Mayer ML, Westbrook GL. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 1987; 28(3):197–276.PubMedCrossRefGoogle Scholar
  129. 129.
    Mothet JP, Parent AT, Wolosker H et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000; 97(9):4926–4931.PubMedCrossRefGoogle Scholar
  130. 130.
    Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor. Trends Neurosci 1987; 10(7):299–302.CrossRefGoogle Scholar
  131. 131.
    Lees KR. Cerestat and other NMDA antagonists in ischemic stroke. Neurology 1997; 49(5 Suppl 4):S66–S69.PubMedCrossRefGoogle Scholar
  132. 132.
    Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: Uncompetitive antagonism. J Physiol 1997; 499(Pt 1):46.Google Scholar
  133. 133.
    Chen HS, Pellegrini JW, Aggarwal SK et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicíty. J Neurosci 1992; 12(11):4427–4436.PubMedGoogle Scholar
  134. 134.
    Chen HS, Wang YF, Rayudu PV et al. Neuroprotective concentrations of the N-methyl-Daspartate open-channel blacker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 1998; 86(4):1121–1132.PubMedCrossRefGoogle Scholar
  135. 135.
    Seif eN, Peruche B, Rossberg C et al. Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 1990; 185(1):19–24.CrossRefGoogle Scholar
  136. 136.
    Bruno V, Copani A, Knopfel T et al. Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neuropharmacology 1995; 34(8):1089–1098.PubMedCrossRefGoogle Scholar
  137. 137.
    Sharp AH, McPherson PS, Dawson TM et al. Differential immunohistochemical localization of inositol 1,4,5-trisphosphate-and ryanodine-sensitive Cat+ release channels in rat brain. J Neurosci 1993; 13(7):3051–3063.PubMedGoogle Scholar
  138. 138.
    Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 1993; 361(6410):315–325.PubMedCrossRefGoogle Scholar
  139. 139.
    Henzi V, MacDermott AB. Characteristics and function of Ca(2+)- and inositol 1,4,5trisphosphate-releasable stores of Cat+ in neurons. Neuroscience 1992; 46(2):251–273.PubMedCrossRefGoogle Scholar
  140. 140.
    Bruno V, Battaglia G, Kingston A et al. Neuroprotective activity of the potent and selective mGlula metabotropic glutamate receptor antagonist, (+)-2-methyl-4 carboxyphenylglycine (LY367385): Comparison with LY357366, a broader spectrum antagonist with equal affinity for mGlula and mG1u5 receptors. Neuropharmacology 1999; 38(2):199–207.PubMedCrossRefGoogle Scholar
  141. 141.
    Kingston AE, O Neill MJ, Bond A et al. Neuroprotective actions of novel and potent ligands of group I and group II metabotropic glutamate receptors. Ann NY Acad Sci 1999; 890:438–449.PubMedCrossRefGoogle Scholar
  142. 142.
    Strasser U, Lobner D, Behrens MM et al. Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures. Eur J Neurosci 1998; 10(9):2848–2855.PubMedCrossRefGoogle Scholar
  143. 143.
    Sagara Y, Schubert D. The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J Neurosci 1998; 18(17):6662–6671.PubMedGoogle Scholar
  144. 144.
    Mukhin A, Fan L, Faden Al. Activation of metabotropic glutamate receptor subtype mGluR1 contributes to post-traumatic neuronal injury. J Neurosci 1996; 16(19):6012–6020.PubMedGoogle Scholar
  145. 145.
    Ambrosini A, Bresciani L, Fracchia S et al. Metabotropic glutamate receptors negatively coupled to adenylate cyclase inhibit N-methyl-D-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro. Mol Pharmacol 1995; 47(5):1057–1064.PubMedGoogle Scholar
  146. 146.
    Battaglia G, Bruno V, Ngomba RT et al. Selective activation of group-II metabotropic glutamate receptors is protective against excitotoxic neuronal death. Eur J Pharmacol 1998; 356(2–3):271–274.PubMedCrossRefGoogle Scholar
  147. 147.
    Bruno V, Battaglia G, Copani A et al. Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration. Eur J Neurosci 1995; 7(9):1906–1913.PubMedCrossRefGoogle Scholar
  148. 148.
    Bruno V, Copani A, Bonanno L et al. Activation of group III metabotropic glutamate receptors is neuroprotective in cortical cultures. Eur J Pharmacol 1996; 310(1):61–66.PubMedCrossRefGoogle Scholar
  149. 149.
    Bruno V, Battaglia G, Ksiazek I et al. Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J Neurosci 2000; 20(17):6413–6420.PubMedGoogle Scholar
  150. 150.
    Churchwell KB, Wright SH, Emma F et al. NMDA receptor activation inhibits neuronal volume regulation after swelling induced by veratridine-stimulated Na+ influx in rat cortical cultures. J Neurosci 1996; 16(23):7447–7457.PubMedGoogle Scholar
  151. 151.
    Inglefield JR, Schwartz-Bloom RD. Activation of excitatory amino acid receptors in the rat hippocampal slice increases intracellular CI“ and cell volume. J Neurochem 1998; 71(4):1396–1404.PubMedCrossRefGoogle Scholar
  152. 152.
    Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 1993; 13(8):3510–3524.PubMedGoogle Scholar
  153. 153.
    Dessi F, Charriaut MC, Ben Ari Y. Glutamate-induced neuronal death in cerebellar culture is mediated by two distinct components: A sodium-chloride component and a calcium component. Brain Res 1994; 650(1):49–55.Google Scholar
  154. 154.
    Hartley DM, Choi DW. Delayed rescue of N-methyl-D-aspartate receptor-mediated neuronal injury in cortical culture. J Pharmacol Exp Ther 1989; 250(2):752–758.PubMedGoogle Scholar
  155. 155.
    Murphy TH, Malouf AT, Sastre A et al. Calcium-dependent glutamate cytotoxicity in a neuronal cell line. Brain Res 1988; 444(2):325–332.PubMedCrossRefGoogle Scholar
  156. 156.
    Garthwaite G, Garthwaite J. Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci Lett 1986; 66(2):193–198.PubMedCrossRefGoogle Scholar
  157. 157.
    Tymianski M, Wallace MC, Spigelman I et al. Cell-permeant Ca(2+) chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 1993; 11(2):221–235.PubMedCrossRefGoogle Scholar
  158. 158.
    Malcolm CS, Ritchie L, Grieve A et al. A prototypic intracellular calcium antagonist, TMB-8, protects cultured cerebellar granule cells against the delayed, calcium-dependent component of glutamate neurotoxicity. J Neurochem 1996; 66(6):2350–2360.PubMedCrossRefGoogle Scholar
  159. 159.
    Lu YM, Yin HZ, Chiang J et al. Ca(2+)-permeable AMPA/kainate and NMDA channels: High rate of Cat+ influx underlies potent induction of injury. J Neurosci 1996; 16(17):5457–5465.PubMedGoogle Scholar
  160. 160.
    Eimer! S, Schramm M. The quantity of calcium that appears to induce neuronal death. J Neurochem 1994; 62(3):1223–1226.CrossRefGoogle Scholar
  161. 161.
    Andreeva N, Khodorov B, Stelmashook E et al. Inhibition of Na+/Ca2+ exchange enhances delayed neuronal death elicited by glutamate in cerebellar granule cell cultures. Brain Res 1991; 548(1–2):322–325.PubMedCrossRefGoogle Scholar
  162. 162.
    Mattson MP, Guthrie P13, Kater SB. A role for Na’-dependent CaZ’ extrusion in protection against neuronal excitotoxicity. FASEB J 1989; 3(13):2519–2526.PubMedGoogle Scholar
  163. 163.
    White RJ, Reynolds IL Mitochondria and Na’/CaZ’ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 1995; 15(2):1318–1328.PubMedGoogle Scholar
  164. 164.
    Carafoli E. Calcium pump of the plasma membrane. Physiol Rev 1991; 71(1):129–153.PubMedGoogle Scholar
  165. 165.
    Gunter TE, Gunter KK, Sheu SS et al. Mitochondrial calcium transport: Physiological and pathological relevance. Am J Physiol 1994; 267(2 Pt 1):C313–C339.PubMedGoogle Scholar
  166. 166.
    Pozzan T, Rizzuto R, Volpe P et al. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 1994; 74(3):595–636.PubMedGoogle Scholar
  167. 167.
    Dubinsky JM. Intracellular calcium levels during the period of delayed excitotoxicity. 7 Neurosci 1993; 13(2):623–631.Google Scholar
  168. 168.
    Tymianski M, Charlton MP, Carlen PL et al. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 1993; 13(5):2085–2104.PubMedGoogle Scholar
  169. 169.
    Dumuis A, Sebben M, Haynes L et al. NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 1988; 336(6194):68–70.PubMedCrossRefGoogle Scholar
  170. 170.
    Chan PH, Fishman RA. Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem 1980; 35(4):1004–1007.PubMedCrossRefGoogle Scholar
  171. 171.
    Lazarewicz JW, Wroblewski JT, Palmer ME et al. Activation of N-methyl-Daspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharmacology 1988; 27(7):765–769.PubMedCrossRefGoogle Scholar
  172. 172.
    Williams JH, Errington ML, Lynch MA et al. Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 1989; 341(6244):739–742.PubMedCrossRefGoogle Scholar
  173. 173.
    Pellegrini-Giampietro DE, Cherici G, Alesiani M et al. Excitatory amino acid release from rat hippocampal slices as a consequence of free-radical formation. J Neurochem 1988; 51(6):1960–1963.PubMedCrossRefGoogle Scholar
  174. 174.
    Lankiewicz S, Marc LC, Truc 13N et al. Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J Biol Chem 2000; 275(22):17064–17071.PubMedCrossRefGoogle Scholar
  175. 175.
    Lee KS, Frank S, Vanderklish P et al. Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 1991; 88(16):7233–7237.PubMedCrossRefGoogle Scholar
  176. 176.
    Siman R, Noszek JC, Kegerise C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 1989; 9(5):1579–1590.PubMedGoogle Scholar
  177. 177.
    Siman R, Noszek JC. Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1988; 1(4):279–287.PubMedCrossRefGoogle Scholar
  178. 178.
    Garthwaite J, Garthwaite G, Palmer RM et al. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 1989; 172(4–5):413–416.PubMedCrossRefGoogle Scholar
  179. 179.
    Gunasekar PG, Kanthasamy AG, Borowitz JL et al. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem 1995; 65(5):2016–2021.PubMedCrossRefGoogle Scholar
  180. 180.
    Dawson TM, Hung K, Dawson VL et al. Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. Ann Neurol 1995; 37(1):115–118.PubMedCrossRefGoogle Scholar
  181. 181.
    Cazevieille C, Muller A, Meynier F et al. Superoxide and nitric oxide cooperation in hypoxia/ reoxygenation-induced neuron injury. Free Radic Biol Med 1993; 14(4):389–395.PubMedCrossRefGoogle Scholar
  182. 182.
    Dawson VL, Dawson TM, Bartley DA et al. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 1993; 13(6):2651–2661.PubMedGoogle Scholar
  183. 183.
    Dawson VL, Kizushi VM, Huang PL et al. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 1996; 16(8):2479–2487.PubMedGoogle Scholar
  184. 184.
    Lipton SA, Choi YB, Pan ZH et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds [see comments]. Nature 1993; 364(6438):626–632.PubMedCrossRefGoogle Scholar
  185. 185.
    Dawson TM, Steiner JP, Dawson VL et al. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity [see comments]. Proc Natl Acad Sci USA 1993; 90(21):9808–9812.PubMedCrossRefGoogle Scholar
  186. 186.
    Ankarcrona M, Dypbukt JM, Orrenius S et al. Calcineurin and mitochondrial function in glutamate-induced neuronal cell death. FEBS Lett 1996; 394(3):321–324.PubMedCrossRefGoogle Scholar
  187. 187.
    Marcaida G, Kosenko E, Minana MD et al. Glutamate induces a calcineurin-mediated dephosphorylation of Na+,K(+)-ATPase that results in its activation in cerebellar neurons in culture. J Neurochem 1996; 66(1):99–104.PubMedCrossRefGoogle Scholar
  188. 188.
    Marcaida G, Minana MD, Grisolia S et al. Lack of correlation between glutamate-induced depletion of ATP and neuronal death in primary cultures of cerebellum. Brain Res 1995; 695(2):146–150.PubMedCrossRefGoogle Scholar
  189. 189.
    Blaustein MP. Calcium transport and buffering in neurons. Trends Neurosci 1988; 11(10):438–443.PubMedCrossRefGoogle Scholar
  190. 190.
    Berridge MJ. Elementary and global aspects of calcium signalling. J Physiol Lond 1997; 499(Pt 2):291–306.PubMedGoogle Scholar
  191. 191.
    Peng TI, Greenamyre FT. Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Mol Pharmacol 1998; 53(6):974–980.PubMedGoogle Scholar
  192. 192.
    Peng TI, Jou MJ, Sheu SS et al. Visualization of NMDA receptor-induced mitochondria] calcium accumulation in striatal neurons. Exp Neurol 1998; 149(1):1–12.PubMedCrossRefGoogle Scholar
  193. 193.
    Scarpa A, Azzone GF. The mechanism of ion translocation in mitochondria. 4. Coupling of K4 efflux with Cat+ uptake. Eur J Biochem 1970; 12(2):328–335.PubMedCrossRefGoogle Scholar
  194. 194.
    Nicholls DG, Scott ID. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J 1980; 186(3):833–839.PubMedGoogle Scholar
  195. 195.
    Nicholls DG. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 1978; 176(2):463–474.PubMedGoogle Scholar
  196. 196.
    Werth JL, Thayer SA. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 1994; 14(1):348–356.PubMedGoogle Scholar
  197. 197.
    Budd SL, Nicholls DG. A reevaluation of the role of mitochondria in neuronal Cat+ homeostasis. J Neurochem 1996; 66(1):403–411.PubMedCrossRefGoogle Scholar
  198. 198.
    Wang GJ, Thayer SA. Sequestration of glutamate-induced Cat+ loads by mitochondria in cultured rat hippocampal neurons. J Neurophysiol 1996; 76(3):1611–1621.PubMedGoogle Scholar
  199. 199.
    Kiedrowski L, Costa E. Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. Mol Pharmacol 1995; 47(1):140–147.PubMedGoogle Scholar
  200. 200.
    Akerman KE. Changes in membrane potential during calcium ion influx and efflux across the mitochondrial membrane. Biochim Biophys Acta 1978; 502(2):359–366.PubMedCrossRefGoogle Scholar
  201. 201.
    Nicholls DG. Calcium transport and porton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart. Biochem J 1978; 170(3):511–522.PubMedGoogle Scholar
  202. 202.
    Heaton GM, Nicholls DG. The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient. Biochem J 1976; 156(3):635–646.PubMedGoogle Scholar
  203. 203.
    White RJ, Reynolds IJ. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci 1996; 16(18):5688–5697.PubMedGoogle Scholar
  204. 204.
    Budd SL, Nicholls DG. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 1996; 67(6):2282–2291.PubMedCrossRefGoogle Scholar
  205. 205.
    Khodorov B, Pinelis V, Vergun O et al. Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Lett 1996; 397(2–3):230–234.PubMedCrossRefGoogle Scholar
  206. 206.
    Schinder AF, Olson EC, Spitzer NC et al. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 1996; 16(19):6125–6133.PubMedGoogle Scholar
  207. 207.
    Vergun O, Keelan J, Khodorov BI et al. Glutamate-induced mitochondria] depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J Physiol Lond 1999; 519 Pt 2451–466.CrossRefGoogle Scholar
  208. 208.
    Denton RM, Richards DA, Chin JG. Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J 1978; 176(3):899–906.PubMedGoogle Scholar
  209. 209.
    Hansford RG. Relation between cytosolic free Ca2+ concentration and the control of pyruvate dehydrogenase in isolated cardiac myocytes. Biochem J 1987; 2411–51.Google Scholar
  210. 210.
    Hansford RG, Zorov D. Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem 1998; 1841–2.Google Scholar
  211. 211.
    McCormack JG, Denton RM. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 1979; 180(3):533–544.PubMedGoogle Scholar
  212. 212.
    McCormack JG, England PJ. Ruthenium Red inhibits the activation of pyruvate dehydrogenase caused by positive inotropic agents in the perfused rat heart. Biochem J 1983; 2142–5.Google Scholar
  213. 213.
    McCormack JG, Denton RM. Mitochondrial Caz+ transport and the role of intramitochondrial Caz+ in the regulation of energy metabolism. Dev Neurosci 1993; 15(3–5):165–173.PubMedCrossRefGoogle Scholar
  214. 214.
    Robb GL, Burnett P, Rutter GA et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 1998; 17(17):4987–5000.CrossRefGoogle Scholar
  215. 215.
    Moreno SR. Contribution of the translocator of adenine nucleotides and the ATP synthase to the control of oxidative phosphorylation and arsenylation in liver mitochondria. J Biol Chem 1985; 260(23):12554–12560.Google Scholar
  216. 216.
    Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 1996; 29(2):169–202PubMedCrossRefGoogle Scholar
  217. 217.
    Dykens JA. Mitochondrial free radical production and oxidative pathophysiology: Implications for neurodegenerative disease. In: Beal MF, Howell N, Bodis-Wollner J, eds. Mitochondria and Free radicals in Neurodegenerative Diseases. New-York: Wiley-Liss, 1997:29–55.Google Scholar
  218. 218.
    Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Nat: implications for neurodegeneration. J Neurochem 1994; 63(2):584–591.PubMedCrossRefGoogle Scholar
  219. 219.
    Kowaltowski AJ, Castilho RF, Grijalba MT et al. Effect of inorganic phosphate concentration on the nature of inner mitochondria! membrane alterations mediated by Caz+ ions. A proposed model for phosphate-stimulated lipid peroxidation. J Biol Chem 1996; 271(6):2929–2934.PubMedCrossRefGoogle Scholar
  220. 220.
    Tabatabaie T, Potts JD, Floyd RA. Reactive oxygen species-mediated inactivation of pyruvate dehydrogenase. Arch Biochem Biophys 1996:3362–3366.Google Scholar
  221. 221.
    Patel M, Day BJ, Crapo JD et al. Requirement for superoxide in excitotoxic cell death. Neuron 1996; 16(2):345–355.PubMedCrossRefGoogle Scholar
  222. 222.
    Sheu KF, Blass JP. The alpha-ketoglutarate dehydrogenase complex. Ann NY Acad Sci 1999; 893 61–78.CrossRefGoogle Scholar
  223. 223.
    Zhang Y, Marcillat O, Giulivi C et al. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 1990; 265(27):16330–16336.PubMedGoogle Scholar
  224. 224.
    Hillered L, Ernster L. Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals. J Cereb Blood Flow Metab 1983; 3(2):207–214.PubMedCrossRefGoogle Scholar
  225. 225.
    Malis CD, Bonventre JV. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J Biol Chem 1986; 261(30):14201–14208.PubMedGoogle Scholar
  226. 226.
    Bindokas VP, Jordan J, Lee CC et al. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 1996; 16(4):1324–1336.PubMedGoogle Scholar
  227. 227.
    Budd SL, Castilho RF, Nicholls DG. Mitochondrial membrane potential and hydroethidinemonitored superoxide generation in cultured cerebellar granule cells. FEBS Lett 1997; 415(1):21–24.PubMedCrossRefGoogle Scholar
  228. 228.
    Rothe G, Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2’,7’-dichlorofluorescin. J Leukoc Biol 1990; 47(5):440–448.PubMedGoogle Scholar
  229. 229.
    Lafon CM, Pietri S, Culcasi M et al. NMDA-dependent superoxide production and neurotoxicity. Nature 1993; 364(6437):535–537.CrossRefGoogle Scholar
  230. 230.
    Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 1995; 15(5 Pt 1):3318–3327.PubMedGoogle Scholar
  231. 231.
    Dugan LL, Sensi SL, Canzoniero LM et al. Mitochondria] production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 1995; 15(10):6377–6388.PubMedGoogle Scholar
  232. 232.
    Herrero A, Barja G. ADP-regulation of mitochondria] free radical production is different with complex I- or complex II-linked substrates: Implications for the exercise paradox and brain hypermetabolism. J Bioenerg Biomembr 1997; 29(3):241–249.PubMedCrossRefGoogle Scholar
  233. 233.
    Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980; 191(2):421–427.PubMedGoogle Scholar
  234. 234.
    Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 1985; 237(2):408–414.PubMedCrossRefGoogle Scholar
  235. 235.
    Demin OV, Kholodenko BN, Skulachev VP. A model of 02.-generation in the complex III of the electron transport chain. Mol Cell Biochem 1998; 184(1–2):21–33.PubMedCrossRefGoogle Scholar
  236. 236.
    Boveris A, Cadenas E, Stoppani AO. Role of ubiquinone in the mitochondria] generation of hydrogen peroxide. Biochem J 1976; 156(2):435–444.PubMedGoogle Scholar
  237. 237.
    Prehn JH. Mitochondrial transmembrane potential and free radical production in excitotoxic neurodegeneration. Naunyn Schmiedebergs Arch Pharmacol 1998; 357(3):316–322.PubMedCrossRefGoogle Scholar
  238. 238.
    Castilho RF, Ward MW, Nicholls DG. Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 1999; 72(4):1394–1401.PubMedCrossRefGoogle Scholar
  239. 239.
    Lafon CM, Culcasi M, Gaven F et al. Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology 1993; 32(11):1259–1266.CrossRefGoogle Scholar
  240. 240.
    Bondy SC, Lee DK. Oxidative stress induced by glutamate receptor agonists. Brain Res 1993; 610(2):229–233.PubMedCrossRefGoogle Scholar
  241. 241.
    Huschenbett J, Zaidi A, Michaelis ML. Sensitivity of the synaptic membrane Na+/Caz+ exchanger and the expressed NCX1 isoform to reactive oxygen species. Biochim Biophys Acta 1998; 1374(1–2):34–46.PubMedCrossRefGoogle Scholar
  242. 242.
    Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconitase [published erratum appears in Proc Natl Acad Sci U S A 1998 Feb 17;95(4):1968]. Proc Nat] Acad Sci U S A 1997; 94(21):11168–11172.CrossRefGoogle Scholar
  243. 243.
    Hoyal CR, Thomas AP, Forman HJ. Hydroperoxide-induced increases in intracellular calcium due to annexin VI translocation and inactivation of plasma membrane Caz+-ATPase. J Biol Chem 1996; 271(46):29205–29210.PubMedCrossRefGoogle Scholar
  244. 244.
    Castilho RF, Hansson 0, Ward MW et al. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 1998; 18(24):10277–10286.PubMedGoogle Scholar
  245. 245.
    Haworth RA, Hunter DR. The Caz+-induced membrane transition in mitochondria. II. Nature of the Caz+ trigger site. Arch Biochem Biophys 1979; 195(2):460–467.PubMedCrossRefGoogle Scholar
  246. 246.
    Petronilli V, Szabo I, Zoratti M. The inner mitochondria] membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 1989; 259(1):137–143.PubMedCrossRefGoogle Scholar
  247. 247.
    Szabo I, Zoratti M. The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J Biol Chem 1991; 266(6):3376–3379.PubMedGoogle Scholar
  248. 248.
    Bernardi P, Vassanelli S, Veronese P et al. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 1992; 267(5):2934–2939.PubMedGoogle Scholar
  249. 249.
    Szabo I, Bemardi P, Zoratti M. Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem 1992; 267(5):2940–2946.PubMedGoogle Scholar
  250. 250.
    Broekemeier KM, Dempsey ME, Pfeiffer DR. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 1989; 264(14):7826–7830.PubMedGoogle Scholar
  251. 251.
    Brustovetsky N, Klingenberg M. Mitochondria] ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry 1996; 35(26):8483–8488.PubMedCrossRefGoogle Scholar
  252. 252.
    Chernyak BV, Bernardi P. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur J Biochem 1996; 238(3):623–630.PubMedCrossRefGoogle Scholar
  253. 253.
    Kowaltowski AJ, Castilho RF, Vercesi AE. Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am J Physiol 1995; 269(1 Pt 1):C141–C147.PubMedGoogle Scholar
  254. 254.
    Kowaltowski AJ, Castilho RF, Vercesi AE. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Cat+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett 1996; 378(2):150–152.PubMedCrossRefGoogle Scholar
  255. 255.
    Kowaltowski AJ, Netto LE, Vercesi AE. The thiol-specific antioxidant enzyme prevents mitochondria(permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J Biol Chem 1998; 273(21):12766–12769.PubMedCrossRefGoogle Scholar
  256. 256.
    Vercesi AE, Kowaltowski AJ, Grijalba MT et al. The role of reactive oxygen species in mitochondrial permeability transition. Biosci Rep 1997; 17(1):43–52.PubMedCrossRefGoogle Scholar
  257. 257.
    Szabo I, Zoratti M. The mitochondrial megachannel is the permeability transition pore. J Bioenerg Biomembr 1992; 24(1):111–117.PubMedCrossRefGoogle Scholar
  258. 258.
    Friche E, Jensen PB, Nissen NI. Comparison of cyclosporin A and SDZ PSC833 as multidrug-resistance modulators in a daunorubicin-resistant Ehrlich ascites tumor. Cancer Chemother Pharmacol 1992; 30(3):235–237.PubMedCrossRefGoogle Scholar
  259. 259.
    Tiberghien F, Loor F. Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs 1996; 7(5):568–578.PubMedCrossRefGoogle Scholar
  260. 260.
    Budd SL, Tenneti L, Lishnak T et al. Mitochondria] and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc Natl Acad Sci USA 2000; 97(11):6161–6166.PubMedCrossRefGoogle Scholar
  261. 261.
    Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Annu Rev Physiol 1995; 576:83–706.Google Scholar
  262. 262.
    Zhang J, Snyder SH. Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol 1995; 352:13–33.Google Scholar
  263. 263.
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol 1996; 271(5 Pt 1):C1424–C1437.PubMedGoogle Scholar
  264. 264.
    Schulz JB, Matthews RT, Jenkins BG et al. Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo. J Neurosci 1995; 15(12):8419–8429.PubMedGoogle Scholar
  265. 265.
    Butler AR, Flitney FW, Williams DL. NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: A chemist s perspective. Trends Pharmacol Sci 1995; 16(1):18–22.CrossRefGoogle Scholar
  266. 266.
    Beckman JS, Beckman TW, Chen J et al. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Aead Sci USA 1990; 87(4):1620–1624.CrossRefGoogle Scholar
  267. 267.
    Radi R, Beckman JS, Bush KM et al. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991; 266(7):4244–4250.PubMedGoogle Scholar
  268. 268.
    Radi R, Beckman JS, Bush KM et al. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991; 288(2):481–487.PubMedCrossRefGoogle Scholar
  269. 269.
    Leist M, Fava E, Montecucco C et al. Peroxynitrite and nitric oxide donors induce neuronal apoptosis by eliciting autocrine excitotoxicity. Eur J Neurosci 1997; 9(7):1488–1498.PubMedCrossRefGoogle Scholar
  270. 270.
    Zhang J, Dawson VL, Dawson TM et al. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 1994; 263(5147):687–689.PubMedCrossRefGoogle Scholar
  271. 271.
    Bolanos JP, Almeida A, Stewart V et al. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 1997; 68(6):2227–2240.PubMedCrossRefGoogle Scholar
  272. 272.
    Bolanos JP, Heales Si, Land JM et al. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 1995; 64(5):1965–1972.PubMedCrossRefGoogle Scholar
  273. 273.
    Brorson JR, Schumacker PT, Zhang H. Nitric oxide acutely inhibits neuronal energy production. J Neurosci 1999; 19(1):147–158.PubMedGoogle Scholar
  274. 274.
    Ghatan S, Lamer S, Kinoshita Y et al. p38 MAP kinase mediates Bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 2000; 150(2):335–347.PubMedCrossRefGoogle Scholar
  275. 275.
    Li Y, Chopp M, Jiang N et al. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 1995; 26(7):1252–1257.PubMedCrossRefGoogle Scholar
  276. 276.
    Linnik MD, Miller JA, Sprinkle-Cavallo J et al. Apoptotic DNA fragmentation in the rat cerebral cortex induced by permanent middle cerebral artery occlusion. Brain Res Mol Brain Res 1995; 32(1):116–124.PubMedCrossRefGoogle Scholar
  277. 277.
    Hara H, Friedlander RM, Gagliardini V et al. Inhibition of interleukin lbeta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl. Acad Sci USA 1997; 94(5):2007–2012.CrossRefGoogle Scholar
  278. 278.
    Lookeren-Campagne M, Gill R. Ultrastructural morphological changes are not characteristic of apoptotic cell death following focal cerebral ischaemia in the rat. Neurosci Lett 1996; 213(2):111–114.PubMedCrossRefGoogle Scholar
  279. 279.
    Mochizuki H, Goto K, Mori H et al. Histochemical detection of apoptosis in Parkinson s disease. J Neurol Sci 1996; 137(2):120–123.PubMedCrossRefGoogle Scholar
  280. 280.
    Tompkins MM, Basgall EJ, Zamrini E et al. Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 1997; 150(1):119–131.PubMedGoogle Scholar
  281. 281.
    Su JH, Anderson AJ, Cummings BJ et al. Immunohistochemical evidence for apoptosis in Alzheimers disease. Neuroreport 1994; 5(18):2529–2533.PubMedCrossRefGoogle Scholar
  282. 282.
    Dragunow M, Faull RL, Lawlor P et al. In situ evidence for DNA fragmentation in Huntington s disease striatum and Alzheimer s disease temporal lobes. Neuroreport 1995; 6(7):1053–1057.PubMedCrossRefGoogle Scholar
  283. 283.
    Portera-Cailliau C, Hedreen JC, Price DL et al. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 1995; 15(5 Pt 2):3775–3787.PubMedGoogle Scholar
  284. 284.
    Martin LJ. Neuronal death in amyotrophie lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 1999; 58(5):459–471.PubMedCrossRefGoogle Scholar
  285. 285.
    Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H et al. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 1995; 21(5):1465–1468.PubMedGoogle Scholar
  286. 286.
    Kingsbury AE, Mardsen CD, Foster 07. DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 1998; 13(6):877–884.PubMedCrossRefGoogle Scholar
  287. 287.
    Uetsuki T, Takemoto K, Nishimura I et al. Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 1999; 19(16):6955–6964.PubMedGoogle Scholar
  288. 288.
    Selznick LA, Holtzman DM, Han BH et al. In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J Neuropathol Exp Neurol 1999; 58(9):1020–1026.PubMedCrossRefGoogle Scholar
  289. 289.
    Drache B, Diehl GE, Beyreuther K et al. Bel-xi-specific antibody labels activated microglia associated with Alzheimer s disease and other pathological states. J Neurosci Res 1997; 47(1):98–108.PubMedCrossRefGoogle Scholar
  290. 290.
    Pettmann B, Henderson CE. Neuronal cell death. Neuron 1998; 20(4):633–647.PubMedCrossRefGoogle Scholar
  291. 291.
    Villa P, Kaufmann SH, Earnshaw WC. Caspases and caspase inhibitors. Trends Biochem Sci 1997; 22(10):388–393.PubMedCrossRefGoogle Scholar
  292. 292.
    Oppenheim RW, Flavell RA, Vinsant S et al. Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 2001; 21(13):4752–4760.PubMedGoogle Scholar
  293. 293.
    Villa PG, Henze’ WJ, Sensenbrenner M et al. Calpain inhibitors, but not caspase inhibitors, prevent actin proteolysis and DNA fragmentation during apoptosis. J Cell Sci 1998; 111(Pt 6):22.Google Scholar
  294. 294.
    Kuida K, Zheng TS, Na S et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996; 384(6607):368–372.PubMedCrossRefGoogle Scholar
  295. 295.
    Kluck RM, Bossy-Wetzel E, Green DR et al. The release of cytochrome c from mitochondria: a primary site for Bel-2 regulation of apoptosis. Science 1997; 275(5303):1132–1136.PubMedCrossRefGoogle Scholar
  296. 296.
    Yang J, Liu X, Bhalla K et al. Prevention of apoptosis by Bc1–2: Release of cytochrome c from mitochondria blocked. Science 1997; 275(5303):1129–1132.PubMedCrossRefGoogle Scholar
  297. 297.
    Susin SA, Zamzami N, Castedo M et al. Bel-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184(4):1331–1341.PubMedCrossRefGoogle Scholar
  298. 298.
    Du C, Fang M, Li Y et al. Smac, a mitochondria! protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102(1):33–42.PubMedCrossRefGoogle Scholar
  299. 299.
    Li P, Nijhawan D, Budihardjo I et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91(4):479–489.PubMedCrossRefGoogle Scholar
  300. 300.
    Bossy-Wetzel E, Green DR. Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 1999; 274(25):17484–17490.PubMedCrossRefGoogle Scholar
  301. 301.
    Shimizu S, Narita M, Tsujimoto Y. Bel-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC [see comments]. Nature 1999; 399(6735):483–487.PubMedCrossRefGoogle Scholar
  302. 302.
    Rosse T, Olivier R, Monney L et al. Bel-2 prolongs cell survival after Bax-induced release of cytochrome c [see comments]. Nature 1998; 391(6666):496–499.PubMedCrossRefGoogle Scholar
  303. 303.
    Deshmukh M, Johnson EM. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 1998; 21(4):695–705.PubMedCrossRefGoogle Scholar
  304. 304.
    Zou H, Li Y, Liu X et al. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999; 274(17):11549–11556.PubMedCrossRefGoogle Scholar
  305. 305.
    Marzo I, Brenner C, Zamzami N et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998; 281 2027–2031.PubMedCrossRefGoogle Scholar
  306. 306.
    Zamzami N, Susin SA, Marchetti P et al. Mitochondrial control of nuclear apoptosis. J Exp Med 1996; 183(4):1533–1544.PubMedCrossRefGoogle Scholar
  307. 307.
    Vander-Heiden MG, Li XX, Gottleib E et al. Bel-xi, promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondria(membrane. J Biol Chem 2001; 276(22):19414–19419PubMedCrossRefGoogle Scholar
  308. 308.
    Rego AC, Vesce S, Nicholls DG. The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1–7 neural cells. Cell Death Differ 2001; 8(10):995–1003.PubMedCrossRefGoogle Scholar
  309. 309.
    Hu Y, Benedict MA, Wu D et al. Bcl-xL interacts with Apaf-1 and inhibits Apaf-1 -dependent caspase-9 activation. Proc Natl Acad Sri USA 1998; 95(8):4386–4391.CrossRefGoogle Scholar
  310. 310.
    Fujimura M, Morita FY, Murakami K et al. Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1998; 18(11):1239–1247.PubMedCrossRefGoogle Scholar
  311. 311.
    Ouyang YB, Tan Y, Comb M et al. Survival-and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome c and Activation of caspase-like proteases. J Cereb Blood Flow Metab 1999; 19(10):1126–1135.PubMedCrossRefGoogle Scholar
  312. 312.
    Matsuyama T, Hata R, Yamamoto Y et al. Localization of Fas antigen mRNA induced in postischemic murine forebrain by in situ hybridization. Brain Res Mol Brain Res 1995; 34(1):166–172.PubMedCrossRefGoogle Scholar
  313. 313.
    Cao G, Minami M, Pei W et al. Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 2001; 21(4):321–333.PubMedCrossRefGoogle Scholar
  314. 314.
    Hayashi T, Sakai K, Sasaki C et al. c-Jun N-terminal kinase (JNK) and JNK interacting protein response in rat brain after transient middle cerebral artery occlusion. Neurosci Lett 2000; 284(3):195–199.PubMedCrossRefGoogle Scholar
  315. 315.
    Krajewski S, Krajewska M, Ellerby LM et al. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 1999; 96(10):5752–5757.PubMedCrossRefGoogle Scholar
  316. 316.
    Budd SL. Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation. PHARMACOL THER 1998; 80(2):203–229.PubMedCrossRefGoogle Scholar
  317. 317.
    Andreyev A, Fiskum G. Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ 1999; 6(9):825–832.PubMedCrossRefGoogle Scholar
  318. 318.
    Luetjens CM, Bui NT, Sengpiel B et al. Delayed mitochondria] dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci 2000; 20(15):5715–5723.PubMedGoogle Scholar
  319. 319.
    Nakagawa T, Zhu H, Morishima N et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403(6765):98–103.PubMedCrossRefGoogle Scholar
  320. 320.
    Rao RV, Hermel E, Castro-Obregon S et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001; 276(36):33869–33874.PubMedCrossRefGoogle Scholar
  321. 321.
    Wang KK, Nath R, Posner A et al. An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc Natl Acad Sci USA 1996; 93(13):6687–6692.PubMedCrossRefGoogle Scholar
  322. 322.
    Harper SJ, LoGrasso P. Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 2001; 13(5):299–310.CrossRefGoogle Scholar
  323. 323.
    Schwarzschild MA, Cole RL, Hyman SE. Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons. J Neurosci 1997; 17(10):3455–3466.PubMedGoogle Scholar
  324. 324.
    Kawasaki H, Morooka T, Shimohama S et al. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem 1997; 272(30):18518–18521.PubMedCrossRefGoogle Scholar
  325. 325.
    Kikuchi M, Tenneti L, Lipton SA. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 2000; 20(13):5037–5044.PubMedGoogle Scholar
  326. 326.
    Miller FD, Pozniak CD, Walsh GS. Neuronal life and death: An essential role for the p53 family. Cell Death Differ 2000; 7(10):880–888.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Thomas Gillessen
    • 1
  • Samantha L. Budd
    • 2
  • Stuart A. Lipton
    • 3
  1. 1.Max-Planck-Institute of Psychiatry, Kraepelinstrasse 2-10MuenchenGermany
  2. 2.Astra Zeneca R&D S dert lje, BioscienceHuddingeSweden
  3. 3.The Burnham Institute

Personalised recommendations