Skip to main content

Phosphorylation by Cyclin-Dependent Protein Kinase 5 Of The Regulatory Subunit (Pγ) Of Retinal cGMP Phosphodiesterase (PDE6): Its Implications In Phototransduction

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

Cyclic GMP phosphodiesterase (PDE6) is a key enzyme in vertebrate retinal phototransduction. After GTP/GDP exchange on the a subunit of transducin (Ta) by illuminated rhodopsin, the GTP-bound form Ta (GTP/Ta) interacts with the regulatory subunit (Py) of PDE6 to activate cGMP hydrolytic activity. The regulatory mechanism of PDE6 has been believed to be a typical G protein-mediated signal transduction process. We found that cyclin-dependent protein kinase 5 (Cdk5) phosphorylates Py complexed with GTP/Ta in vitro and in vivo. Phosphorylated Py dissociates from GTP/Ta without GTP hydrolysis and interacts effectively with catalytic subunits of PDE6 to inhibit the enzyme activity. These observations provide new twists to the current model of retinal phototransduction. In this article, in addition to the details of Py phosphorylation by Cdk5, we review previous studies implying the Py phosphorylation and the turnoff of PDE6 without GTP hydrolysis and indicate the direction for future studies of Py phosphorylation, including the possible involvement of Ca2+/Ca2+-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stryer L. Cyclic GMP cascade of vision. Ann Rev Neurosci 1986; 9:87–119.

    Article  PubMed  CAS  Google Scholar 

  2. Miller HW. Dark Mimic. Invest Ophthalmol Vis Sci 1990; 31:1664–1673.

    Google Scholar 

  3. Miki N, Baraban JM, Keirns JJ et al. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J Biol Chem 1975; 250:6320–6327.

    PubMed  CAS  Google Scholar 

  4. Baehr W, Devlin MJ, Applebury ML. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem 1979; 254:11669–11677.

    PubMed  CAS  Google Scholar 

  5. Deterre P, Bigay J, Forquet F et al. cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc Natl Acad Sci USA 1988; 85:2424–2428.

    Article  PubMed  CAS  Google Scholar 

  6. Fung BKK, Young JH, Yamane HK et al. Subunit stoichiometry of retinal rod cGMP phosphodiesterase Biochemistry 1990; 29:2657–2664.

    Article  PubMed  CAS  Google Scholar 

  7. Ovchinnikov YA, Gubanov VV, Khramtsov NV et al. Cyclic GMP phosphodiesterase from bovine retina: Amino acid sequence of the a-subunit and nucleotide sequence of the corresponding cDNA. FBE Lett 1987; 223:169–173.

    Article  CAS  Google Scholar 

  8. Lipkin VM, Khramtsov NV, Vasilevskaya IA et al. (3-Subunit of bovine rod photoreceptor cGMP phosphodiesterase: Comparison with the phosphodiesterase family. J Biol Chem 1990; 265:12955–12959.

    PubMed  CAS  Google Scholar 

  9. Yamazaki A, Sen I, Bitensky MW et al. Cyclic GMP-specific, high affinity, noncatalytic binding sites on light-activated phosphodiesterase. J Biol Chem 1980; 255:11619–11624.

    PubMed  CAS  Google Scholar 

  10. Hurley JB, Stryer L. Purification and characterization of the y regulatory subunit of the cyclic yGMP phosphodiesterase from retinal rod outer segments. J Biol Chem 1982; 257:11094–11099.

    PubMed  CAS  Google Scholar 

  11. Yamazaki A, Stein PJ, Chernoff N et al. Activation mechanism of rod outer segment cyclic GMP phosphodiesterase: Release of inhibitor by GTP/GTP-binding protein. J Biol Chem 1983; 258:8188–8194.

    PubMed  CAS  Google Scholar 

  12. Yamazaki A, Hayashi F, Tatsumi M et al. Interaction between the subunits of transducin and cyclic GMP phosphodiesterase in Rana catesbiana rod photoreceptors. J Biol Chem 1990; 265:11539–11548.

    PubMed  CAS  Google Scholar 

  13. Wensel TG, Stryer L. Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its y subunit and transducin. Protein Struct Funct Genet 1986; 1:90–99.

    Article  CAS  Google Scholar 

  14. Fung BKK, Griswold-Prenner I. G protein-effector coupling: Binding of rod phosphodiesterase inhibitory subunit to transducin. Biochemistry 1989; 28:3133–3137.

    Article  PubMed  CAS  Google Scholar 

  15. Clerc A, Bennett N. Activated cGMP phosphodiesterase of retinal rods: A complex with tranducin a subunit. J Biol Chem 1992; 267:6620–6627.

    PubMed  CAS  Google Scholar 

  16. Clerc A, Catty P, Bennett N. Interaction between cGMP-phosphodiesterase and transducin a-subunit in retinal rods: A cross-linking study. J Biol Chem 1992; 267:19948–19953.

    PubMed  CAS  Google Scholar 

  17. Liu W, Clark WA, Sharma P et al. Mechanism of allosteric regulation of the rod cGMP phosphodiesterase activity by the helical domain of transducin a subunit. J Biol Chem 1998; 273:34284–34292.

    Article  PubMed  CAS  Google Scholar 

  18. Fung BKK, Hurley JB, Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci USA 1981; 78:152–156.

    Article  PubMed  CAS  Google Scholar 

  19. Yamazaki A, Bartucca F, Ting A et al. Reciprocal effects of an inhibitory factor on catalytic activity and noncatalytic cGMP binding sites of rod phosphodiesterase. Proc Natl Acad Sci USA 1982; 79:3702–3706.

    Article  PubMed  CAS  Google Scholar 

  20. Cote RH, Bownds MD, Arshaysky VY. cGMP binding sites on photoreceptor phosphodiesterase: Role in feedback regulation of visual transduction. Proc Natl Acad Sci USA 1994; 91:4845–4849.

    Article  PubMed  CAS  Google Scholar 

  21. Gillespie PG, Beavo JA. cGMP is tightly bound to bovine retinal rod phosphodiesterase. Proc Natl Acad Sci USA 1989; 86:4311–4315.

    Article  PubMed  CAS  Google Scholar 

  22. Tsuboi S, Matsumoto H, Jackson KW et al. Phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in Rana catesbiana rod photoreceptors: I. Characterization of the phosphorylation. J Biol Chem 1994; 269:15016–15023.

    PubMed  CAS  Google Scholar 

  23. Tsuboi S, Matsumoto H, Yamazaki A. Phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in Rana catesbiana rod photoreceptors: II. A possible mechanism for the turnoff of cGMP phosphodiesterase without GTP hydrolysis. J Biol Chem 1994; 269:15024–15029.

    PubMed  CAS  Google Scholar 

  24. Matsuura I, Bondarenko VA, Maeda T et al. Phosphorylation by cyclin-dependent protein kinase 5 of the regulatory subunit of retinal cGMP phosphodiesterase. I. Identification of the kinase and its role in the turnoff of photoreceptor in vitro. J Biol Chem 2000; 275:32950–32957.

    Article  PubMed  CAS  Google Scholar 

  25. Hayashi F, Matsuura I, Kachi S et al. Phosphorylation by cyclin-dependent protein kinase 5 of the regulatory subunit of retinal cGMP phosphodiesterase: II. Its role in the turnoff of phosphodiesterase in vivo. J Biol Chem 2000; 275:32958–32965.

    Article  PubMed  CAS  Google Scholar 

  26. Yamazaki A, Yamazaki M, Tsuboi S et al. Regulation of G protein function by an effector in GTP-dependent signal transduction: An inhibitory subunit of cGMP phosphodiesterase inhibits GTP hydrolysis by transducin in vertebrate rod photoreceptors. J Biol Chem 1993; 268:8899–8907.

    PubMed  CAS  Google Scholar 

  27. Kutuzov M, Pfister C. Activation of the retinal cGMP-specific phosphodiesterase by the GDP-loaded a-subunit of transducin. Eur J Biochem 1994; 220:963–971.

    Article  PubMed  CAS  Google Scholar 

  28. Paglia MJ, Mou H, Cote RH. Regulation of photoreceptor phosphodiesterase (PDE6) by phosphorylation of its inhibitory y subunit-re-evaluated. J Biol Chem 2002; In press

    Google Scholar 

  29. Fung BKK, Stryer L. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc Natl Acad Sci USA 1980; 77:2500–2504.

    Article  CAS  Google Scholar 

  30. Davis RI. The mitogen-activated protein kinase signal transduction pathay. J Biol Chem 1993; 268:14553–14556.

    PubMed  CAS  Google Scholar 

  31. Pines J. Cyclins and cyclin-dependent kinases: A biochemical view. Biochem J 1995; 308:697–711.

    PubMed  CAS  Google Scholar 

  32. Beaudette K, Lew J, Wang JH. Substrate specificity characterization of a CDC2-like protein kinase purified from bovine brain. J Biol Chem 1993; 268:20825–20830.

    PubMed  CAS  Google Scholar 

  33. Ishiguro K, Ihara Y, Uchida T et al. A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau. J Biochem (Tokyo) 1988; 104:319–321.

    CAS  Google Scholar 

  34. Ishiguro K, Takamatsu M, Tomizawa K et al. Tau protein kinase I converts normal tau protein into A68-like component of paired helical filaments. J Biol Chem 1992; 267:10897–10901.

    PubMed  CAS  Google Scholar 

  35. Paudel HK, Lew J, Ali Z et al. Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in Tau associated with Alzheimer’s paired helical filaments. J Biol Chem 1993; 268:23512–23518.

    PubMed  CAS  Google Scholar 

  36. Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci 1998; 21:428–433.

    Article  PubMed  CAS  Google Scholar 

  37. Dhavan, R., Tsai, L.-H. A decade of CdkS. Nature Reviews 2001; 2:749–759.

    Article  PubMed  CAS  Google Scholar 

  38. Ohshima T, Ward JM, Huh CG et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 1996; 93:11173–11178.

    Article  PubMed  CAS  Google Scholar 

  39. Ahlijanian MK, Barrezueta NX, Williams RD et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruption in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sei USA 2000; 97:2910–2915.

    Article  CAS  Google Scholar 

  40. Gao CY, Zakeri Z, Zhu Y et al. Expression of CdkS, p35, and CdkS-associated kinase activity in the developing rat lens. Dev Genet 1997; 20:267–75.

    Article  PubMed  CAS  Google Scholar 

  41. Zelenka PS, Gao CY, Stepp MA. Overexpression of CdkS in corneal epithelium of transgenic mice inhibits corneal wound healing. Invest Ophthalmol Vis Sci 2001; 42:S104.

    Google Scholar 

  42. Tsai LH, Delalle I, Caviness VS et al. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 1994; 371:419–423.

    Article  PubMed  CAS  Google Scholar 

  43. Lew J, Huang QQ, Qi Z et al. A brain-specific activator of cyclin-dependent kinase 5. Nature 1994; 371:423–426.

    Article  PubMed  CAS  Google Scholar 

  44. Humbert S, Dhavan R, Tsai L. p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 2000; 113:975–983.

    PubMed  CAS  Google Scholar 

  45. Kusakawa G, Saito T, Onuki R et al. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J Biol Chem 2000; 275:17166–17172.

    Article  PubMed  CAS  Google Scholar 

  46. Lee MS, Kwon YT, Li M et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 2000; 405:360–364.

    Article  PubMed  CAS  Google Scholar 

  47. Nath R, Davis M, Probert AW et al. Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem Biophys Res Commun 2000; 274:16–21.

    Article  PubMed  CAS  Google Scholar 

  48. Patrick GN, Zukerberg L, Nikolic M et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999; 402:615–622.

    Article  PubMed  CAS  Google Scholar 

  49. Hayashi F, Lin GY, Matsumoto H et al. Phosphatidylinositol-stimulated phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in vertebrate rod photoreceptors. Proc Natl Acad Sci USA 1991; 88:4333–4337.

    Article  PubMed  CAS  Google Scholar 

  50. Udovichenko IP, Cunnick J, Gonzalez K et al. Functional effect of phosphorylation of the photoreceptor phosphodiesterase inhibitory subunit by protein kinase C. J Biol Chem 1994; 269:9850–9856.

    PubMed  CAS  Google Scholar 

  51. Udovichenko IP, Cunnick J, Gonzalez K et al. Protein kinase C in rod outer segment: effects of phosphorylation of the phosphodiesterase inhibitory subunit. Biochem J 1996; 317:291–295.

    PubMed  CAS  Google Scholar 

  52. Bondarenko VA, Desai M, Dua S et al. Residues within the polycationic region of cGMP phosphodiesterase a subunit crucial for the interaction with transducin y subunit: Identification by endogenous ADP-ribosylation and site-directed mutagenesis. J Biol Chem 1997; 272:15856–15864.

    Article  PubMed  CAS  Google Scholar 

  53. Xu LX, Tanaka Y, Bondarenko VA et al. Phosphorylation of the _ subunit of the retinal photoreceptor cGMP phosphodiesterase by the cAMP-dependent protein kinase and its effect on the y subunit interaction with other proteins. Biochemistry 1998; 37:6205–6213.

    Article  PubMed  CAS  Google Scholar 

  54. Harada Y, Sanada K, Fukada Y. Circadian activation of bullfrog retinal mitogen-activated protein kinase associates with oscillator function. J Biol Chem 2000; 275:37078–37085.

    Article  PubMed  CAS  Google Scholar 

  55. Palczewski K. Purification of rhodopsin kinse from bovine rod outer segments. Method Neurosci 1993; 15:217–225.

    Google Scholar 

  56. Liebman PA, Pugh Jr EN. ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membranes. Nature 1980; 287:734–736.

    Article  PubMed  CAS  Google Scholar 

  57. Miller JL, Dratz EA. Phosphorylation at sites near rhodopsin’s carboxyl-terminus regulates light initiated cGMP hydrolysis. Vision Res 1984; 24:1509–1521.

    Article  PubMed  CAS  Google Scholar 

  58. Miller JL, Fox DA, Litman B. Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation. Biochemistry 1986; 25:4983–4988.

    Article  PubMed  CAS  Google Scholar 

  59. Sitaramayya A, Liebman PA. Mechanism of ATP quench of phosphodiesterase activation in rod disc membranes. J Biol Chem 1983; 258:1205–1209.

    PubMed  CAS  Google Scholar 

  60. Sitaramayya A. Rhodopsin kinase prepared from bovine rod disk membranes quenches light activation of cGMP phosphodiesterase in a reconstituted system. Biochemistry 1986; 25:5460–5468.

    Article  PubMed  CAS  Google Scholar 

  61. Sitaramayya A, Liebman PA. Phosphorylation of rhodopsin and quenching of cyclic GMP phosphodiesterase activation by ATP at weak bleaches. J Biol Chem 1983; 258:12106–12109.

    PubMed  CAS  Google Scholar 

  62. Kawamura S, Murakami M. Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Nature 1991; 349:420–423.

    Article  PubMed  CAS  Google Scholar 

  63. Kawamura S. Rhodopsin phosphorylation as a mechanism of cyclic phosphodiesterase regulation by S-modulin. Nature 1993; 362:855–857.

    Article  PubMed  CAS  Google Scholar 

  64. Chen CK, Inglese J, Letkowitz RJ et al. Cat+-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem 1995; 270:18060–18066.

    Article  PubMed  CAS  Google Scholar 

  65. Calvert PD, Klenchin VA, Bownds MD. Inhibition of rhodopsin kinase by recoverin: Further evidence for a negative feedback system in phototransduction. J Biol Chem 1995; 270:24127–24129.

    Article  PubMed  CAS  Google Scholar 

  66. Sanada K, Shimizu F, Kaneyama K et al. Calcium-bound recoverin targets rhodopsin kinase to membranes to inhibit rhodopsin phosphorylation. FEBS Lett 1996; 384:227–230.

    Article  PubMed  CAS  Google Scholar 

  67. Yamazaki A. Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation? Behavioral Brain Sci 1995; 18:494.

    Article  Google Scholar 

  68. Dolph PJ, Man-Son-Hing H, Yarfitz S et al. An eye-specific Gß subunit essential for termination of the phototransduction cascade. Nature 1994; 370:59–61.

    Article  PubMed  CAS  Google Scholar 

  69. Clack JW, Oakley II B, Stein PJ. Injection of GTP-binding protein or cyclic GMP phosphodiesterase hyperpolarizes retinal rods. Nature 1983; 305:50–52.

    Article  PubMed  CAS  Google Scholar 

  70. Kondo H, Miller WH. Rod light adaptation may be mediated by acceleration of the phosphodiesterase-guanylate cycalse cycle. Proc Natl Acad Sci USA 1988; 85:1322–1326.

    Article  PubMed  CAS  Google Scholar 

  71. Lamb TD, Matthews HR. Incorporation of analogues of GTP and GDP into rod photoreceptors isolated from the tiger salamander. J Physiol (London) 1988; 407:463–487.

    CAS  Google Scholar 

  72. Erickson MA, Robinson P, Lisman J. Deactivation of visual transduction without guanosine triphosphate hydrolysis by G protein. Science 1992; 257:1255–1258.

    Article  PubMed  CAS  Google Scholar 

  73. Yau KW, Baylor DA. Cyclic GMP-activated conductance of retinal photoreceptor cells. Ann Rev Neurisci 1989; 12:289–327.

    Article  CAS  Google Scholar 

  74. Palczewski K, Subbaraya I, Gorczyca WA et al. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 1994; 13:395–404.

    Article  PubMed  CAS  Google Scholar 

  75. Dizhoor AM, Olshevskaya EV, Henzel WJ et al. Cloning, sequencing, and expression of a 24-kDa Cat+-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 1995; 270:25200–25206.

    Article  PubMed  CAS  Google Scholar 

  76. Gorczyca WA, Polans AS, Surgucheva IG et al. Guanylyl cyclase activating protein: A calcium-sensitive regulator of phototransduction. J Biol Chem 1995; 270:22029–22036.

    Article  PubMed  CAS  Google Scholar 

  77. Haeseleer F, Sokal I, Li N et al. Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem 1999; 274:6526–6535.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamazaki, A., Moskvin, O., Yamazaki, R.K. (2002). Phosphorylation by Cyclin-Dependent Protein Kinase 5 Of The Regulatory Subunit (Pγ) Of Retinal cGMP Phosphodiesterase (PDE6): Its Implications In Phototransduction. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics