Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

S-Modulin is a CaZ+-binding protein found in frog rod photoreceptorst,2and its bovine homologue is known as recoverin34. In the CaZ+-bound form, S-modulin inhibits rhodopsin phosphorylation5through inhibition of rhodopsin kinase.6-9Because rhodopsin phosphorylation is the quench mechanism of light-activated rhodopsin (R*)10,11the inhibition of the phosphorylation by S-modulin probably contributes to increase the lifetime of R* to result in sustained hydrolysis of cGMP5. The CaZ+concentration decreases in the light in vertebrate photoreceptors12-14and this decrease is essential for light-adaptation.15,16Thus, S-modulin is expected to regulate the lifetime of R* and thereby regulate the extent and the time course of hydrolysis of cGMP depending on the intensity of background light. With this mechanism, S-modulin is believed to regulate the waveform of a photoresponse and the efficiency of the light in the generation of a photoresponse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kawamura S, Murakami M. Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Nature 1991; 349:420–423.

    Article  PubMed  CAS  Google Scholar 

  2. Kawamura S. Light-sensitivity modulating protein in frog rods. Photochem Photobiol 1992; 56:1173–1180.

    Article  PubMed  CAS  Google Scholar 

  3. Dizhoor AM, Ray S, Kumar S et al. Recoverin: a calcium sensitive activator of retinal guanylate cyclase. Science 1991; 251:915–918.

    Article  PubMed  CAS  Google Scholar 

  4. Kawamura S, Hisatomi 0, Kayada S et al. Recoverin has S-modulin activity in frog rods. J Biol Chem 1993; 268:14579–14582.

    PubMed  CAS  Google Scholar 

  5. Kawamura S. Rhodopsin phosphorylation as a mechanism of cGMP phosphodiesterase regulation by S-modulin. Nature 1993; 362:855–857.

    Article  PubMed  CAS  Google Scholar 

  6. Gorodovikova EN, Philippov PD. The presence of a calcium-sensitive p26-containing complex in bovine retina rod cells. FEBS Lett 1993; 335:277–279.

    Article  PubMed  CAS  Google Scholar 

  7. Chen C-K, Inglese J, Lefkowitz RJ et al. Ca2+-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem 1995; 270:18060–18066.

    Article  PubMed  CAS  Google Scholar 

  8. Klenchin VA, Calvert PD, Bownds MD. Inhibition of rhodopsin kinase by recoverin. J Biol Chem 1995; 270:16147–16152.

    Article  PubMed  CAS  Google Scholar 

  9. Sanada K, Shimizu F, Kameyama K et al. Calcium-bound recoverin targets rhodopsin kinase to membranes to inhibit rhodopsin phosphorylation. FEBS Lett 1996; 384:227–230.

    Article  PubMed  CAS  Google Scholar 

  10. Chen J, Makino CL, Peachey NS et al. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 1995; 267:374–377.

    Article  PubMed  CAS  Google Scholar 

  11. Chen CK, Burns ME, Spencer M et al. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci USA 1999; 96:3718–3722.

    Article  PubMed  CAS  Google Scholar 

  12. McCarthy ST, Younger JP, Owen WG. Dynamic, spatially nonuniform calcium regulation in frog rods exposed to light. J Neurophysiol 1996; 76:1991–2004.

    PubMed  CAS  Google Scholar 

  13. Sampath AP, Matthews HR, Cornwall MC et al. Bleached pigment produces a maintained decrease in outer segment CaZ+in salamander rods. J Gen Physiol 1998; 111:53–64.

    Article  PubMed  CAS  Google Scholar 

  14. Gray-Keller MP, Detwiler PB. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 1994; 13:849–861.

    Article  PubMed  CAS  Google Scholar 

  15. Matthews HR, Murphy RLW, Fain GL et al. Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 1988; 334:67–69.

    Article  PubMed  CAS  Google Scholar 

  16. Nakatani K, Yau KW. 1988 Calcium and light adaptation in retinal rods and cones. Nature 314:69–71.

    Article  Google Scholar 

  17. Kawamura S, Takamatsu K, Kitamura K. Purification and characterization of S-modulin, a calcium-dependent regulator on cGMP phosphodiesterase in frog rod photoreceptors. Biochem Biophys Res Commun 1992; 186:411–417.

    Article  PubMed  CAS  Google Scholar 

  18. Polans AS, Buczytko J, Crabb J et al. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy. J Cell Biol 1991; 112:981–989.

    Article  PubMed  CAS  Google Scholar 

  19. Kawamura S, Kuwata O, Yamada M et al. Photoreceptor protein s26, a cone homologue of S-modulin in frog retina. J Biol Chem 1996; 271:21359–21364.

    Article  PubMed  CAS  Google Scholar 

  20. Gray-Keller MP, Polans AS, Palczewski K et al. The effect of recoverin-like calcium-binding proteins on the photoresponse of retinal rods. Neuron 1993; I0:523–531.

    Article  Google Scholar 

  21. Sagoo MS, Lagnado L. G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade. Nature 1997; 389:392–394.

    Article  PubMed  CAS  Google Scholar 

  22. Matthews HR. Actions of CaZ+on an early stage in phototransduction revealed by the dynamic fall in CaZ+concentration during the bright flash response. J Gen Physiol 1997; 109:141–146.

    Article  PubMed  CAS  Google Scholar 

  23. Dodd RL, Makino CL, Chen J et al. Visual transduction in transgenic mouse lacking recoverin. Invest Ophthalmol Vis Sci 1995; 36:S641.

    Google Scholar 

  24. Erickson MA, Lagnado L, Zozulya S et al. The effect of recombinant recoverin on the photoresponse of truncated rod photoreceptors. Proc Natl Acad Sci USA 1998; 95:6474–6479.

    Article  PubMed  CAS  Google Scholar 

  25. Otto-Bruc AE, Fariss RN, Van Hooser JP et al. Phosphorylation of photolyzed rhodopsin is calcium-insensitive in retina permeabilizesd by a-toxin. Proc Natl Acd Sci USA 1998; 95:15014–15019.

    Article  CAS  Google Scholar 

  26. Koutalos Y, Yau KW. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends Neurosci 1996; 19:73–81.

    Article  PubMed  CAS  Google Scholar 

  27. Mendez A, Burns ME, Sokal et al. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Sci USA 2001; 98:9948–9953.

    Article  PubMed  CAS  Google Scholar 

  28. Sato N, Kawamura S. Molecular mechanism of S-modulin action: Binding target and effect of ATP. J. Biochem 1997; 122:1139–1145.

    Article  PubMed  CAS  Google Scholar 

  29. Tachibanaki S, Nanda K, Sasaki K et al. Amino acid residues of S-modulin responsible for interaction with rhodopsin kinase. J Biol Chem 2000; 275:3313–3319.

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka T, Ames JB, Harvey TS et al. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 1995; 376:444–447

    Article  PubMed  CAS  Google Scholar 

  31. Ames JB, Ishima R, Tanaka T et al. Molecular mechanics of calcium-myristoyl switches. Nature 1997; 389:198–202.

    Article  PubMed  CAS  Google Scholar 

  32. Johnson WC, Palczewski K, Gorczyca WA et al. Calcium binding to recoverin: implications for secondary structure and membrane association. 1997; Biochimica et Biophysica Acta 1997; 1342:164–174.

    Article  PubMed  CAS  Google Scholar 

  33. De Castro E, Nef S, Fiumelli H et al. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem Biophys Res Commun 1995; 216:133–140.

    Article  CAS  Google Scholar 

  34. Yamagata K, Goto K, Kuo CH et al. Visinin: a novel calcium binding protein expressed in retinal cone cells. Neuron 1990; 2:469–476.

    Article  Google Scholar 

  35. Flaherty KM, Zozulya S, Stryer L et al. Three-dimentional structure of recoverin, a calcium sensor in vision. Cell 1993; 75:709–716.

    Article  PubMed  CAS  Google Scholar 

  36. Dizhoor MD, Ericsson LH, Johnson RS et al. The NH2terminus of retinal recoverin is acylated by a small family of fatty acids. J Biol Chem 1992; 267:16033–16036.

    PubMed  CAS  Google Scholar 

  37. Zozulya S, Stryer L. 1992 Calcium-myristoyl switch. Proc Natl Acad Sci USA 89:11569–11573.

    Article  PubMed  CAS  Google Scholar 

  38. Dizhoor AM, Chen CK, Olshevskaya E et al. Role of the acylated amino terminus of recoverin in Cat+-dependent membrane interaction. Science 1993; 259:829–832.

    Article  PubMed  CAS  Google Scholar 

  39. Kawamura S, Cox JA, Nef P. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin. Biochem Biophys Res Commun 1994; 203:121–127.

    Article  PubMed  CAS  Google Scholar 

  40. Calvert PD, Klenchin VA, Bownds MD. Rhodopsin kinase inhibition by recoverin. J Biol Chem 1995; 270:24127–24129.

    Article  PubMed  CAS  Google Scholar 

  41. Ames JB, Porumb T, Tanaka T et al. Amino-terminal myristoylation induces cooperative calcium binding to recoverin. J Biol Chem 1995; 270:4526–4533.

    Article  PubMed  CAS  Google Scholar 

  42. Matsuda S, Hisatomi O, Ishino T et al. The role of calcium-binding sites in S-modulin function. J Biol Chem 1998; 273:20223–20227.

    Article  PubMed  CAS  Google Scholar 

  43. Matsuda S, Hisatomi O, TokunagaF.Role of carboxyl-terminal charges on S-modulin membrane affinity and inhibition of rhodopsin phosphorylation. Biochemistry 1999; 38:1310–1315.

    Article  PubMed  CAS  Google Scholar 

  44. Pongs O, Lindemeier J, Zhu XR, et al. Frequenin-a novel calcium-binding protein that modulate synaptic efficacy in the Drosophila nervous system. Neuron 1993; 11:15–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kawamura, S., Tachibanaki, S. (2002). S-Modulin. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics