Skip to main content

Photoreceptor Degeneration and Ca2+ Influx Through Light-Activated Channels of Drosophila

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

We discuss in this chapter the role of Ca2+homeostasis in maintaining the structural integrity of photoreceptor cells inDrosophila.Both insufficient and excessive amounts of Ca2+in photoreceptor cells appear to lead to cell degeneration. Because one of the two classes of light-sensitive channels inDrosophilaphotoreceptors is highly Ca2+-permeable, how well this class of channels functions can profoundly affect Ca2+homeostasis. We will begin by reviewingDrosophilaphototransduction, emphasizing what is known about the mechanism of activation of light-sensitive channels. We will then describe Ca2+entry through light-sensitive channels and the presumed mechanisms by which too Iittle and too much Ca2+entry can both cause photoreceptor degeneration. We will conclude the chapter with discussions of two examples of mutations known to cause unregulated Ca2+entry through light-sensitive channels, leading to massive photoreceptor degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pak WL.Drosophilain vision research. Invest Ophthal Vis Sci 1995; 36:2340–2357.

    PubMed  CAS  Google Scholar 

  2. Zucker CS. The biology of vision inDrosophila.Proc Natl Acad Sci USA 1996; 93:571–576.

    Article  Google Scholar 

  3. Montell C. Visual transduction inDrosophila.Annu Rev Cell Dev Biol 1999; 15:231–268.

    Article  PubMed  CAS  Google Scholar 

  4. Minke B, Hardie RC. Genetic dissection ofDrosophilaPhototransduction. In: Stavenga DG, DeGrip WJ, Pugh Jr EN, eds. Handbook of Biological Physics, Vol. 3, 2000:449–525.

    Google Scholar 

  5. Pak WL, Ostroy SE, Deland MC et al. Photoreceptor mutant ofDrosophila:Is protein involved in intermediate steps of phototransduction? Science 1976; 194:956–959.

    Article  CAS  Google Scholar 

  6. Bloomquist BB, Shortridge RD, Schneuwly S et al. Isolation of a putative phospholipase C gene ofDrosophila norpA and it role in phototransduction. Cell 1988; 54:723–733.

    Article  PubMed  CAS  Google Scholar 

  7. Montell C, Rubin GM. Molecular characterization of theDrosophila trplocus: A putative integral membrane protein required for phototransduction. Neuron 1989; 2:1313–1323.

    Article  PubMed  CAS  Google Scholar 

  8. Wong F, Schaefer EL, Roop BC et al. Proper function of theDrosophila trpgene product during pupal development is important for normal visual transduction in the adult. Neuron 1989; 3:81–94.

    Article  PubMed  CAS  Google Scholar 

  9. Hardie RC, Minke B. Thetrpgene is essential for a light activated Ca2+ channel inDrosophilaphotoreceptors. Neuron 1992; 8:643–651.

    Article  PubMed  CAS  Google Scholar 

  10. Phillips AM, Bull A, Kelly LE. Identification of aDrosophilagene encoding a calmodulinbinding protein with homology to the trp phototransduction gene. Neuron 1992; 8:631–642.

    Article  PubMed  CAS  Google Scholar 

  11. Niemeyer BA, Suzuki E, Scott K et al. TheDrosophilalight-activated conductance is composed of the two channels Trp and Trpl. Cell 1996; 85:651–659.

    Article  PubMed  CAS  Google Scholar 

  12. Scott K, Sun Y, Beckingham K et al. Calmodulin regulation ofDrosophilalight-activated channels and receptor function mediates termination of the light response in vivo. Cell 1997; 91:375–383.

    Article  PubMed  CAS  Google Scholar 

  13. Reuss H, Mojet MH, Chyb S et al. In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 1997; 19:1249–1259.

    Article  PubMed  CAS  Google Scholar 

  14. Xu X-ZS, Li H-S, Guggino WB et al. Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 1997; 89:1155–1164.

    Article  PubMed  CAS  Google Scholar 

  15. Berridge MJ. Cell signalling-A tale of two messengers. Nature 1993; 365:388–389.

    Article  PubMed  CAS  Google Scholar 

  16. Minke B, Selinger Z. Inositol lipid pathway in fly photoreceptors: Excitation, calcium mobilization and retinal degeneration. In: Osborne NN, Chader GJ, eds. Progress in Retinal Research. Oxford: Pergamon, 1992:99–124.

    Google Scholar 

  17. Ranganathan R, Bacskai BJ, Tsein RY et al. Cytosolic calcium transients: spatial localization and rolein Drosophilaphotoreceptor cell function. Neuron 1994; 13:837–848.

    Article  PubMed  CAS  Google Scholar 

  18. Hardie RC. Calcium signaling: setting store by calcium channels. Curr Biol 1996; 6:1371–1373.

    Article  PubMed  CAS  Google Scholar 

  19. Acharya JK, Jalink K, Hardy RW et al. InsP3 receptor essential for growth and differentiation but not for vision inDrosophila.Neuron 1997; 18:881–887.

    Article  PubMed  CAS  Google Scholar 

  20. Raghu P, Colley NJ, Webel R et al. Normal phototransduction inDrosophilaphotoreceptors lacking an InsP3 receptor gene. Mol and Cell Neurosci 2000; 15:429–445.

    Article  CAS  Google Scholar 

  21. Chyb S, Raghu P, Hardie RC. Polyunsaturated fatty acids activate theDrosophilalight-sensitive channels TRP and TRPL. Nature 1999; 397:255–259.

    Article  PubMed  CAS  Google Scholar 

  22. Choma-Ornan I, Joel-Almagor T, Ben-Ami HC et al. A common mechanism underlies vertebrate calcium signaling and Drosophila phototransduction. J Neurosci 2001; 21:2622–2629.

    Google Scholar 

  23. Agam K, von Campenhausen M, Levy S et al. Metabolic stress reversibly activates theDrosophilalight-sensitive channels TRP and TRPL in vivo. J Neurosci 2000; 20:5748–5755.

    PubMed  CAS  Google Scholar 

  24. Arslan P, Corps AN, Hesketh TR et al. cis-unsaturated fatty acids uncouple mitochondria and stimulate glycolysis in intact lymphocytes. J Biochem 1984; 217:419–425.

    CAS  Google Scholar 

  25. Hermesh O, Kalderon B, Bar TJ. Mitochondria uncoupling by a long chain fatty acyl analogue. J Biol Chem 1998; 273:3937–3942.

    Article  PubMed  CAS  Google Scholar 

  26. Hardie RC. Whole-cell recordings of the light induced current in dissociatedDrosophilaphotoreceptors: evidence for feedback by calcium permeating the light-sensitive channels. Proc Natl Acad Sci USA 1991; 245:203–210.

    Google Scholar 

  27. Peretz A, Sandler C, Kirschfeld K et al. Genetic dissection of light-induced Ca2+ influx intoDrosophilaphotoreceptors. J Gen Physiol 1994; 104:1057–1077.

    Article  PubMed  CAS  Google Scholar 

  28. Raghu P, Usher K, Jonas S et al. Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron 2000; 26:169–179.

    Article  PubMed  CAS  Google Scholar 

  29. Yoon J, Ben-Ami HC, Hong YS et al. Novel mechanism of massive photoreceptor degeneration caused by mutations in thetrpgene ofDrosophila.J Neurosci 2000; 20:649–659.

    PubMed  CAS  Google Scholar 

  30. Trump BF, Berezesky IK. The role of altered [Ca21; regulation in apoptosis, oncosis, and necrosis. Biochim Biophys Acta 1996; 1313:173–178.

    Article  PubMed  Google Scholar 

  31. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature 1999; 399:A7–A14.

    Article  PubMed  CAS  Google Scholar 

  32. Alloway PG, Howard L, Dolph PJ. The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 2000; 28:129–138.

    Article  PubMed  CAS  Google Scholar 

  33. Byk T, Bar Yaacov M, Doza YN et al. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Proc Natl Acad Sci USA 1993; 90:1907–1911.

    Article  PubMed  CAS  Google Scholar 

  34. Dolph PJ, Ranganathan R, Colley NJ et al. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science 1993; 260:1910–1916.

    Article  PubMed  CAS  Google Scholar 

  35. Vinos J, Jalink K, Hardy RW et al. A G protein-coupled receptor phosphatase required for rhodopsin function. Science 1997; 277:687–690.

    Article  PubMed  CAS  Google Scholar 

  36. Kiselev A, Socolich M, Vinos J et al. A molecular pathway for light-dependent photoreceptor apoptosis inDrosophila.Neuron 1999; 28:139–152.

    Article  Google Scholar 

  37. Kahn ES, Matsumoto H. Calcium/calmodulin-dependent kinase II phosphorylatesDrosophilavisual arrestin. J. Neurochem. 1997; 68:169–175.

    Article  PubMed  CAS  Google Scholar 

  38. Alloway PG, Dolph PJ. A role for the light-dependent phosphorylation of visual arrestin. Proc Natl Acad Sci USA 1999; 96:6072–6077.

    Article  PubMed  CAS  Google Scholar 

  39. Harris WA, Stark WS. Hereditary retinal degeneration ofDrosophila melanogaster:A mutant defect associated with the phototransduction process. J Gen Physiol 1977; 69:261–291.

    Article  PubMed  CAS  Google Scholar 

  40. Stark WS, Sapp R. Retinal degeneration and photoreceptor maintenance inDrosophila: rdgBand its interaction with other mutants. Inherited and environmentally induced retinal degenerations: Allan R. Liss, 1989:467–489.

    Google Scholar 

  41. Steel F, O’Tousa JE. Rhodopsin activation causes retinal degeneration inDrosophila rdgCmutant. Neuron 1990; 4:883–890.

    Article  Google Scholar 

  42. Smith DP, Ranganathan R, Hardy RW et al. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science 1991; 254:1478–1484.

    Article  PubMed  CAS  Google Scholar 

  43. Leonard DS, Bowman VD, Ready DF et al. Degeneration of photoreceptors in rhodopsin mutants ofDrosophila.J Neurobiol 1992; 23:605–626.

    Article  PubMed  CAS  Google Scholar 

  44. Dolph Pi, Ranganathan R, Colley NJ et al. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science 1993; 260:1910–1916.

    Article  Google Scholar 

  45. Pak WL. Retinal degeneration mutants ofDrosophila.In: Wright A, Jay B, eds. Modern Genetics: Molecular Genetics of Inherited Eye Disorders. Chur: Harwood Academic Publishers, 1994:29–52.

    Google Scholar 

  46. Vihtelic TS, Goebl M, Milligan S et al. Localization ofDrosophilaretinal degeneration B, a membrane-associated phosphatidylinositol transfer protein. J Cell Biol 1993; 122:1013–1022.

    Article  PubMed  CAS  Google Scholar 

  47. Hotta Y, Benzer S. Genetic dissection of theDrosophilanervous system by means of mosaics. Proc Natl Acad Sci USA 1970; 67:1156–1163.

    Article  PubMed  CAS  Google Scholar 

  48. Pak WL. Mutations affecting the vision ofDrosophila melanogaster.In: King RC, ed. Handbook of Genetics, Vol. 3. New York: Plenum, 1975:703–733.

    Google Scholar 

  49. Johnson MA, Frayer KL, Stark WS. Characteristics ofrdgA:Mutants with retinal degeneration inDrosophila.J Insect Physiol 1982; 28:233–242.

    Article  Google Scholar 

  50. Matsumoto E, Hirosawa K, Takagawa K et al. Structure of retinular cells ina Drosophila melanogastervisual mutant, rdga, at early stages of degeneration. Cell Tissue Res. 1988; 252:293–300.

    PubMed  CAS  Google Scholar 

  51. Yoshioka T, Inoue H, Hotta Y. Defective phospholipid metabolism in the retinular cell membrane ofnorpA (no receptor potential)visual transduction mutants ofDrosophila.Biochem Biophys Res Com 1983; 111:567–573.

    Article  PubMed  CAS  Google Scholar 

  52. Yoshioka T, Inoue H, Hotta Y. Absence of diglyceride kinase activity in the photoreceptor cells ofDrosophilamutant. Biochem Biophys Res Corn 1984; 119:389–395.

    Article  CAS  Google Scholar 

  53. Inoue H, Yoshioka T, Hotta Y. Diacylglycerol kinase defect ina Drosophilaretinal degeneration mutant rdga. J Biol Chem 1989; 264:5996–6000.

    PubMed  CAS  Google Scholar 

  54. Masai I, Okazaki A, Hosoya T et al.Drosophilaretinal degeneration A gene encodes an eye-specific diacylglycerol kinase with cysteine-rich zinc-finger motifs and ankyrin repeats. Proc Natl Acad Sci USA 1993; 90:11157–11161.

    Article  PubMed  CAS  Google Scholar 

  55. Hochstrate P. Lanthanum mimics thetrpphotoreceptor mutant ofDrosophilain the blowfly Calliphora. J Comp Physiol A 1989; 166:179–188.

    Article  PubMed  CAS  Google Scholar 

  56. Suss-Toby E, Selinger Z, Minke B. Lanthanum reduces the excitation efficiency in fly photoreceptors. J Gen Physiol 1991; 98:849–868.

    Article  PubMed  CAS  Google Scholar 

  57. Cosens DJ, Manning A. Abnormal retinogram froma Drosophilamutant. Nature 1969; 224:285–287.

    Article  PubMed  CAS  Google Scholar 

  58. Cosens D. Blindness ina Drosophilamutant. J Insect Physiol 1971; 17:285–302.

    Article  Google Scholar 

  59. Pak WL. Study of photoreceptor function usingDrosophilamutant. In: Breakfield X, ed. Neurogenetics: Genetic Approaches to the Nervous System. New York: Elsevier-North Holland, 1979:67–99.

    Google Scholar 

  60. Minke B, Wu C-F, Pak WL. Induction of photoreceptor voltage noise in the dark inDrosophilamutant. Nature 1975; 258:84–87.

    Article  PubMed  CAS  Google Scholar 

  61. Cosens DJ, Perry MM. The fine structure of the eye of a visual mutant, A-type, ofDrosophila melanogaster.J Insect Physiol 1972; 18:1773–1786.

    Article  PubMed  CAS  Google Scholar 

  62. Li C, Geng C, Leung H-T et al. INAF, a protein required for transient receptor potential Ca2+ channel function. Proc Nati Acad Sci USA 1999; 96:13474–13479.

    Article  CAS  Google Scholar 

  63. Pak WL. Molecular genetic studies of photoreceptor function usingDrosophilamutant. In: Chader GJ, Farber D, eds. Molecular Biology of the Retina: Basic and Clinically Relevant Studies. New York: Wiley-Liss, 1991:1–32.

    Google Scholar 

  64. Peretz A, Suss-Toby E, Rom-Glas A et al. The light response ofDrosophilaphotoreceptors is accompanied by an increase in cellular calcium: effects of specific mutations. Neuron 1994; 12:1257–1267.

    Article  PubMed  CAS  Google Scholar 

  65. Franceschini N. Pupil and pseudopupi1 in the compound eye ofDrosophila.In: Wehner R, ed. Information Processing in the Visual System of Arthropods. New York: Springer-Verlag, 1972:75–82.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geng, C., Pak, W.L. (2002). Photoreceptor Degeneration and Ca2+ Influx Through Light-Activated Channels of Drosophila . In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics