Skip to main content

Caldendrins in the Inner Retina

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

Caldendrin is the first member of a novel family of Ca2+-binding proteins (CaBPs). Its unique two-domain structure is composed of a calmodulin-homologous C-terminus and an unrelated N-terminal part. The latter is thought to mediate the tight association of caldendrin with the subsynaptic cytoskeleton. Caldendrin is expressed in forebrain regions with a laminar cytoarchitecture as well as in the inner retina where it is localized to OFF cone bipolar and a subset of amacrine and ganglion cells. In addition, caldendrin is prominently present in processes and synapses of the inner plexiform layer. Thus, caldendrin-immunoreactivity is displayed by subpopulations of most retinal cell classes, with the exception of glial cells. Caldendrin is most likely involved in dendritic Ca2+-signaling, one of the functions of its close relative, calmodulin. However, several lines of evidence suggest that due to its unique properties caldendrin might not merely substitute for calmodulin. It is speculated that either the specific enrichment in cellular micro-compartments like the postsynaptic cytomatrix, the unique two-domain structure or the altered distribution of surface charges renders caldendrin specific for distinct binding partners or certain Ca2+-triggered signaling events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Masland RH. The fundamental plan of the retina. Nat Neurosci 2001; 4(9):877–886.

    Article  PubMed  CAS  Google Scholar 

  2. Andressen C, Blümcke I, Celio MR. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 1993; 271(2):181–208.

    Article  PubMed  CAS  Google Scholar 

  3. Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 2001; 353(Pt 1):1–12.

    Article  PubMed  CAS  Google Scholar 

  4. Palczewski K, Polans AS, Baehr W et al. Cate+9-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays 2000; 22(4):337–350.

    Article  PubMed  CAS  Google Scholar 

  5. Polans A, Baehr W, Palczewski K. Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina. Trends Neurosci 1996; 19(12):547–554.

    Article  PubMed  CAS  Google Scholar 

  6. Braunewell KH, Gundelfinger ED. Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res 1999; 295(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  7. Lenz SE, Henschel Y, Zopf D et al. VILIP, a cognate protein of the retinal calcium binding proteins visinin and recoverin, is expressed in the developing chicken brain. Brain Res Mol Brain Res 1992; 15(1–2):133–140.

    Article  PubMed  CAS  Google Scholar 

  8. Nakano A, Terasawa M, Watanabe M et al. Neurocalcin, a novel calcium binding protein with three EF-hand domains, expressed in retinal amacrine cells and ganglion cells. Biochem Biophys Res Commun 1992; 186(3):1207–1211.

    Article  PubMed  CAS  Google Scholar 

  9. Bastianelli E, Takamatsu K, Okazaki K et al. Hippocalcin in rat retina. Comparison with calbindin-D28k, calretinin and neurocalcin. Exp Eye Res 1995; 60(3):257–266.

    Article  PubMed  CAS  Google Scholar 

  10. De Raad S, Comte M, Nef P et al. Distribution pattern of three neural calcium-binding proteins (NCS-1, VILIP and recoverin) in chicken, bovine and rat retina. Histochem J 1995; 27(7):524–535.

    PubMed  Google Scholar 

  11. Reynolds AJ, Bartlett SE, Morgans C. The distribution of neuronal calcium sensor-1 protein in the developing and adult rat retina. Neuroreport 2001; 12(4):725–728.

    Article  PubMed  CAS  Google Scholar 

  12. Seidenbecher CI, Langnaese K, Sanmarti-Vila L et al. Caldendrin, a novel neuronal calcium-binding protein confined to the somato-dendritic compartment. J Biol Chem 1998; 273(33):21324–21331.

    Article  PubMed  CAS  Google Scholar 

  13. Haeseleer F, Sokal I, Verlinde CL et al. Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin. J Biol Chem 2000; 275(2):1247–1260.

    Article  PubMed  CAS  Google Scholar 

  14. Laube G, Seidenbecher CI, Richter K et al. The neuron-specific Ca2+-binding protein caldendrin: gene structure, splice isoforms and expression in rat brain. Mol Cell Neurosci (in press).

    Google Scholar 

  15. Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993; 232(2):584–599.

    Article  PubMed  CAS  Google Scholar 

  16. Rogers MS, Strehler EE. Calmodulin. In: Celio MR, Pauls TL, Schwaller B, eds. Guidebook to the calcium-binding proteins. Oxford Univ Press, 1996.

    Google Scholar 

  17. Wässle H, Peichl L, Airaksinen MS et al. Calcium-binding proteins in the retina of a calbindin-null mutant mouse. Cell Tissue Res 1998; 292(2):211–218.

    Article  PubMed  Google Scholar 

  18. Menger N, Seidenbecher CI, Gundelfinger ED et al. The cytoskeleton-associated neuronal calcium-binding protein caldendrin is expressed in a subset of amacrine, bipolar and ganglion cells of the rat retina. Cell Tissue Res 1999; 298(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  19. Haverkamp S, Wässle H. Immunocytochemical analysis of the mouse retina. J Comp Neurol 2000; 424(1):1–23.

    Article  PubMed  CAS  Google Scholar 

  20. Wässle H, Grunert U, Rohrenbeck J. Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J Comp Neurol 1993; 332(4):407–420.

    Article  PubMed  Google Scholar 

  21. Pasteels B, Rogers J, Blachier F et al. Calbindin and calretinin localization in retina from different species. Vis Neurosci 1990; 5(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  22. Peichl L, Gonzalez-Soriano J. Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 1994; 11(3):501–517.

    Article  PubMed  CAS  Google Scholar 

  23. Hamano K, Kiyama H, Emson PC et al. Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J Comp Neurol 1990; 302(2):417–424.

    Article  PubMed  CAS  Google Scholar 

  24. Pochet R, Pasteels B, Seto-Ohshima A et al. Calmodulin and calbindin localization in retina from six vertebrate species. J Comp Neurol 1991; 314(4):750–762.

    Article  PubMed  CAS  Google Scholar 

  25. Yamaguchi K, Yamaguchi F, Miyamoto O et al. Calbrain, a novel two EF-hand calcium-binding protein that suppresses Ca2+/calmodulin-dependent protein kinase II activity in the brain. J Biol Chem 1999; 274(6):3610–3616.

    Article  PubMed  CAS  Google Scholar 

  26. Sokal I, Li N, Verlinde CL et al. Cate+l-binding proteins in the retina: from discovery to etiology of human disease(1). Biochim Biophys Acta 2000; 1498(2–3):233–251.

    Article  PubMed  CAS  Google Scholar 

  27. Hu LA, Chen W, Premont RT et al. G protein-coupled receptor kinase 5 regulates betal-adrenergic receptor association with PSD-95. J Biol Chem 2001; 77.

    Google Scholar 

  28. Lee A, Westenbroek RE, Haeseleer F et al. Inhibition of CAV2.1 Ca2+channels by a neuronal Ca2+binding protein. Soc Neurosci Abstr 2001; 27(1):14–2.

    Google Scholar 

  29. Smalla KH, Matthies H, Langnäse K et al. The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CAI synapses. Proc Natl Acad Sci USA 2000; 97(8):4327–4332.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seidenbecher, C.I., Reissner, C., Kreutz, M.R. (2002). Caldendrins in the Inner Retina. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics