Skip to main content

The Complex of cGMP-Gated Channel and Na+/ Ca2+K+Exchanger in Rod Photoreceptors

  • Chapter
Book cover Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

Ca2+is an important signal ion in photoreceptors for recovery after excitation and light adaptation. It enters the outer segment as a minor fraction of the dark current through cGMP-gated channels and is extruded in the same cell compartment by Na+/Ca2+K+exchange. Channel and exchanger are located exclusively in the plasma membrane, but not in the cytoplasmic membrane stack, the discs, which contain the visual pigment rhodopsin. The channel consists presumably of two a-subunits and two n-subunits, whereas the exchanger is a monomeric protein. Recently, considerable evidence has been accumulated indicating that both proteins form a complex which is bound to peripherin/rds, an integral protein of the disc rim. This review focuses on the complex of cGMP-gated channel and Na+/Ca2+K+exchanger. The possibility of direct functional interaction between channel and exchanger is discussed. Furthermore, the consequences of different subunit arrangements of the channel for the channel-exchanger complex are considered. Finally, a Ca2+diffusion model is presented which examines the possibility that Ca2+currents are locally restricted to the close vicinity of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hecht S, Shlaer S, Pirenne MH. Energy, quanta, and vision. J Gen Physiol 1942; 25:819–40.

    Article  PubMed  CAS  Google Scholar 

  2. Rieke F, Baylor DA. Single photon detection by rod cells of the retina. Reviews of Modern Physics 1998; 70:1027–36.

    Article  CAS  Google Scholar 

  3. Burns ME, Baylor DA. Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annual Review of Neuroscience 2001; 24:779–805.

    Article  PubMed  CAS  Google Scholar 

  4. Pugh EN Jr, Nikonov S, Lamb TD. Molecular mechanisms of vertebrate photoreceptor light adaptation. Current Opinion in Neurobiology 1999; 9:410–8.

    Article  PubMed  CAS  Google Scholar 

  5. Yau K-W. Phototransduction mechanism in retinal rods and cones. Invest Ophthal Vis Sci 1994; 35:9–32.

    PubMed  CAS  Google Scholar 

  6. Detwiler PB, Gray-Keller MP. The mechanisms of vertebrate light adaptation: speeded recovery versus slowed activation. Curr Opin Neurobiol 1996; 6:440–4.

    Article  PubMed  CAS  Google Scholar 

  7. Ratto GM, Payne R, Owen WG et al. The concentration of cytosolic free calcium in vertebrate rod outer segments measured with Fura-2. J Neurosci 1988; 8:3240–6.

    PubMed  CAS  Google Scholar 

  8. Gray-Keller MP, Detwiler PB. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 1994; 13:849–61.

    Article  PubMed  CAS  Google Scholar 

  9. McCarthy ST, Younger JP, Owen WG. Free calcium concentrations on bullfrog rods determined in the presence of multiple forms of Fura-2. Biophys J 1994; 67:2076–89.

    Article  PubMed  CAS  Google Scholar 

  10. Sampath AP, Matthews HR, Cornwall MC et al. Bleached pigment produces a maintained decrease in outer segment Ca2+in salamander rods. J Gen Physiol 1998; 111:53–64.

    Article  PubMed  CAS  Google Scholar 

  11. Detwiler PB, Gray-Keller MP. Measurement of light-evoked changes in cytoplasmic calcium in functionally intact isolated rod outer segments. Meth Enzymol 2000; 316:133–46.

    Article  PubMed  CAS  Google Scholar 

  12. Koutalos Y, Yau K-W. Regulation of sensitivity in vertebrate rod photoreceptors by calcium.TINS1996; 19:73–81.

    PubMed  CAS  Google Scholar 

  13. Hsu Y-T, Molday RS. Modulation of the cGMP gated channel of rod photoreceptor cells by calmodulin. Nature 1993; 361:76–9.

    Article  PubMed  CAS  Google Scholar 

  14. Bauer PJ. Cyclic GMP-gated channels of bovine rod photoreceptors: affinity, density and stoichiometry of Ca2+-calmodulin binding sites. J Physiol 1996; 494:675–85.

    PubMed  CAS  Google Scholar 

  15. Ray S, Zozulya S, Niemi GA et al. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision. Proc Natl Acad Sci USA 1992; 89:5705–9.

    Article  PubMed  CAS  Google Scholar 

  16. Gorczyca WA, Gray-Keller MP, Detwiler PB et al. Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Proc Natl Acad Sci USA 1994; 91:4014–8.

    Article  PubMed  CAS  Google Scholar 

  17. Kawamura S. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 1993; 362:855–7.

    Article  PubMed  CAS  Google Scholar 

  18. Koutalos Y, Nakatani K, Tamura T et al. Characterization of guanylate cyclase activity in single retinal rod outer segments. J Gen Physiol 1995; 106:863–90.

    Article  PubMed  CAS  Google Scholar 

  19. Koutalos Y, Nakatani K, Yau K-W. The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods. J Gen Physiol 1995; 106:891–921.

    Article  PubMed  CAS  Google Scholar 

  20. Koch K-W. Control of photoreceptor proteins by Cat+. Cell Calcium 1995; 18:314–21.

    Article  PubMed  CAS  Google Scholar 

  21. Senin II, Zargarov AA, Alekseev AM et al. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase. FEBS Letters 1995; 376:87–90.

    Article  PubMed  CAS  Google Scholar 

  22. Otto-Bruc AE, Fariss RN, Van Hooser JP et al. Phosphorylation of photolyzed rhodopsin is calcium-insensitive in retina permeabilized by a-toxin. Proc Nati Acad Sci USA 1998; 95:15014–9.

    Article  CAS  Google Scholar 

  23. Ikura M. Calcium binding and conformational response in EF-hand proteins. TIBS 1996; 21:14–7.

    PubMed  CAS  Google Scholar 

  24. Young RW. The renewal of photoreceptor cell outer segments. J Cell Biol 1967; 33:61–72.

    Article  PubMed  CAS  Google Scholar 

  25. Steinberg RH, Fisher SK, Anderson DH. Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 1980; 190:501–18.

    Article  PubMed  CAS  Google Scholar 

  26. Hsu Y-T, Wong SYC, Connell GJ, Molday RS. Structural and functional properties of rhodopsin from rod outer segment disk and plasma membrane. Biochim Biophys Acta 1993; 1145:85–92.

    Article  PubMed  CAS  Google Scholar 

  27. Molday RS, Hicks D, Molday LL. Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthal Vis Sci 1987; 28:50–61.

    PubMed  CAS  Google Scholar 

  28. Arikawa K, Molday LL, Molday RS et al. Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors:relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol 1992; 116:659–67.

    Article  PubMed  CAS  Google Scholar 

  29. Moritz OL, Molday RS. Molecular cloning, membrane topology, and localization of bovine Rom-1 in rod and cone photoreceptor cells. Invest Ophthal Vis Sci 1996; 37:352–62.

    PubMed  CAS  Google Scholar 

  30. Goldberg AFX, Molday RS. Subunit composition of the peripherin/rds-rom-1 disk rim complex from rod photoreceptors: Hydrodynamic evidence for a tetrameric quaternary structure. Biochemistry 1996; 35:6144–9.

    Article  PubMed  CAS  Google Scholar 

  31. Papermaster DS, Schneider BG, Zorn MA et al. Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J Cell Biol 1978; 78:415–25.

    Article  PubMed  CAS  Google Scholar 

  32. Illing M, Molday LL, Molday RS. The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 1997; 272:10303–10.

    Article  PubMed  CAS  Google Scholar 

  33. Sun H, Molday RS, Nathans J. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 1999; 274:8269–81.

    Article  PubMed  CAS  Google Scholar 

  34. Bungert S, Molday LL, Molday RS. Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters. J Biol Chem 2001; 276:23539–46.

    Article  PubMed  CAS  Google Scholar 

  35. Körschen HG, Beyermann M, Müller F et al. Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Nature 1999; 400:761–6.

    Article  PubMed  Google Scholar 

  36. Eckmiller MS. Microtubules in a rod-specific cytoskeleton associated with outer segment incisures. Visual Neuroscience 2000; 17:711–22.

    Article  PubMed  CAS  Google Scholar 

  37. Boesze-Battaglia K, Albert AD. Fatty acid composition of bovine rod outer segment plasma membrane. Exp Eye Res. 1989; 49:699–701.

    Article  PubMed  CAS  Google Scholar 

  38. Cone RA. Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biology 1972; 236:39–43.

    PubMed  CAS  Google Scholar 

  39. Liebman PA, Entine G. Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 1974; 185:457–9.

    Article  PubMed  CAS  Google Scholar 

  40. Poo M, Cone RA. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 1974; 247:438–41.

    Article  PubMed  CAS  Google Scholar 

  41. Calvert PD, Govardovskii VI, Krasnoperova N et al. Membrane protein diffusion sets the speed of rod phototransduction. Nature 2001; 411:90–4.

    Article  PubMed  CAS  Google Scholar 

  42. Molday RS, Molday LL. Differences in the protein composition of bovine retinal rod outer segment disk and plasma membranes isolated by ricin-gold-dextran density perturbation method. J Cell Biol 1987; 105:2589–601.

    Article  PubMed  CAS  Google Scholar 

  43. Bauer PJ. Evidence for two functionally different membrane fractions in bovine retinal rod outer segments. J Physiol 1988; 401:309–27.

    PubMed  CAS  Google Scholar 

  44. Cook NJ, Molday LL, Reid D et al. The cGMP-gated channel of bovine rod photoreceptors is localized exclusively in the plasma membrane. J Biol Chem 1989; 264:6996–9.

    PubMed  CAS  Google Scholar 

  45. Reid DM, Friedel U, Molday RS et al. Identification of the sodium-calcium exchanger as the major ricin-binding glycoprotein of bovine rod outer segments and its localization to the plasma membrane. Biochemistry 1990; 29:1601–7.

    Article  PubMed  CAS  Google Scholar 

  46. Caretta A, Saibil HR. Visualization of cyclic nucleotide binding sites in the vertebrate retina by fluorescence microscopy. J Cell Biol 1989; 108:1517–22.

    Article  PubMed  CAS  Google Scholar 

  47. Boesze-Battaglia K, Kong F, Lamba OP et al. Purification and light-dependent phosphorylation of a candidate fusion protein, the photoreceptor cell peripherin/rds. Biochemistry 1997; 36:6835–46.

    Article  PubMed  CAS  Google Scholar 

  48. Fesenko EE, Kolesnikov SS, Lyubarsky AL. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 1985; 313:310–3.

    Article  PubMed  CAS  Google Scholar 

  49. Bodoia RD, Detwiler PB. Patch-clamp recordings of the light-sensitive dark noise in retinal rods from the lizard and frog. J Physiol 1985; 367:183–216.

    PubMed  CAS  Google Scholar 

  50. Gray P, Attwell D. Kinetics of light-sensitive channels in vertebrate photoreceptors. Proc R Soc Lond B 1985; 223:379–88.

    Article  PubMed  CAS  Google Scholar 

  51. Zimmerman AL, Baylor DA. Electrical properties of the light-sensitive conductance of salamander retinal rods. Biophys J 1985; 47:357a.

    Google Scholar 

  52. Eismann E, Müller F, Heinemann SH et al. A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+blockage, and ionic selectivity. Proc Natl Acad Sci USA 1994; 91:1109–13.

    Article  PubMed  CAS  Google Scholar 

  53. Haynes LW, Kay AR, Yau K-W. Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 1986; 321:66–70.

    Article  PubMed  CAS  Google Scholar 

  54. Zimmerman AL, Baylor DA. Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 1986; 321:70–2.

    Article  PubMed  CAS  Google Scholar 

  55. Karpen JW, Loney DA, Baylor DA. Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness. J Physiol 1992; 448:257–74.

    PubMed  CAS  Google Scholar 

  56. Poetsch A, Molday LL, Molday RS. The cGMP-gated channel and related glutamic acid rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes. J Biol Chem 2001; 276:48009–16.

    PubMed  CAS  Google Scholar 

  57. Cook NJ, Zeilinger C, Koch K-W et al. Solubilization and functional reconstitution of the cGMP-dependent cation channel from bovine rod outer segments. J Biol Chem 1986; 261:17033–9.

    PubMed  CAS  Google Scholar 

  58. Bauer PJ, Drechsler M. Association of cyclic GMP-gated channels and Na+-Ca2+-K+exchangers in bovine retinal rod outer segment plasma membranes. J Physiol 1992; 451:109–31.

    PubMed  CAS  Google Scholar 

  59. Yau K-W, Nakatani K. Electrogenic Na-Ca exchange in retinal rod outer segment. Nature 1984; 311:661–3.

    Article  PubMed  CAS  Google Scholar 

  60. Hodgkin AL, McNaughton PA, Nunn BJ. Measurement of sodium-calcium exchange in salamander rods. J Physiol 1987; 391:347–70.

    PubMed  CAS  Google Scholar 

  61. Hodgkin AL, Nunn BJ. The effect of ions on sodium-calcium exchange in salamander rods. J Physiol 1987; 391:371–98.

    PubMed  CAS  Google Scholar 

  62. Lagnado L, Cervetto L, McNaughton PA. Ion transport by the Na-Ca exchange in isolated rod outer segments. Proc Natl Acad Sci USA 1988; 85:4548–52.

    Article  PubMed  CAS  Google Scholar 

  63. Cook NJ, Kaupp UB. Solubilization, purification, and reconstitution of the sodium-calcium exchanger from bovine retinal rod outer segments. J Biol Chem 1988; 263:11382–8.

    PubMed  CAS  Google Scholar 

  64. Nicoll DA, Applebury ML. Purification of the bovine rod outer segment Na+/Ca2+exchanger. J Biol Chem 1989; 264:16207–13.

    PubMed  CAS  Google Scholar 

  65. Schwarzer A, Schauf H, Bauer PJ. Binding of the cGMP-gated channel to the Na/Ca-K exchanger in rod photoreceptors. J Biol Chem 2000; 275:13448–54.

    Article  PubMed  CAS  Google Scholar 

  66. Molday RS, Molday LL. Molecular properties of the cGMP-gated channel of rod photoreceptors. Vision Res 1998; 38:1315–23.

    Article  PubMed  CAS  Google Scholar 

  67. Li Z, Nicoll DA, Collins A et al. Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+exchanger. J Biol Chem 1991; 266:1014–20.

    PubMed  CAS  Google Scholar 

  68. He Z, Petesch N, Voges K-Pet al. Identification of important amino acid residues of the Na+-Ca2+exchanger inhibitory peptide, XIP. J Membr Biol 1997; 156:149–56.

    Article  PubMed  CAS  Google Scholar 

  69. Hale CC, Bliler S, Quinn TP et al. Localization of an exchange inhibitory peptide (XIP) binding site on the cardiac soidum-calcium exchanger. Biochem Biophys Res Commun 1997; 236:113–7.

    Article  PubMed  CAS  Google Scholar 

  70. Schwarzer A, Kim TSY, Hagen V et al. The Na/Ca-K exchanger of rod photoreceptor exists as dimer in the plasma membrane. Biochemistry 1997; 36:13667–76.

    Article  PubMed  CAS  Google Scholar 

  71. Shammat IM, Gordon SE. Stoichiometry and arrangement of subunits in rod cyclic nucleotide-gated channels. Neuron 1999; 23:809–19.

    Article  PubMed  CAS  Google Scholar 

  72. Liu DT, Tibbs GR, Paoletti P et al. Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron 1998; 21:235–48.

    Article  PubMed  CAS  Google Scholar 

  73. Weitz D, Zoche M, Müller F et al. Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the (3-subunit. EMBO J 1998; 17:2273–84.

    Article  PubMed  CAS  Google Scholar 

  74. Loewen CJR, Molday RS. Disulfide-mediated ologomerization of peripherin/rds and Rom-I in photoreceptor disk membranes. J Biol Chem 2000; 275:5370–8.

    Article  PubMed  CAS  Google Scholar 

  75. He Y, Ruiz ML, Karpen JW. Constraining the subunit order of rod cyclic nucleotide-gated channels reveals a diagonal arrangement of like subunits. Proc Natl Acad Sci USA 2000; 97:895–900.

    Article  PubMed  CAS  Google Scholar 

  76. Bauer PJ, Schauf H. Mutual inhibition of the dimerized Na/Ca-K exchanger in rod photoreceptors. Biochim Biophys Acta 2002; 1559:121–34.

    Article  PubMed  CAS  Google Scholar 

  77. Neher E. Vesicle pools and Ca2+microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 1998; 20:389–99.

    Article  PubMed  CAS  Google Scholar 

  78. Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci 1986; 9:87–119.

    Article  PubMed  CAS  Google Scholar 

  79. Nakatani K, Yau K-W. Calcium and magnesium fluxes across the plasma membrane of the toad rod outer segment. J Physiol 1988; 395:695–729.

    PubMed  CAS  Google Scholar 

  80. Bauer PJ. Binding of the retinal rod Na+/Ca2+-K+exchanger to the cGMP-gated channel indicates local Ca2+-signaling in vertebrate photoreceptors. Ann NY Acad Sci 2002; in press.

    Google Scholar 

  81. Neher E. Usefulness and limitations of linear approximations to the understanding of Ca’ signals. Cell Calcium 1998; 24:345–57.

    Article  PubMed  CAS  Google Scholar 

  82. Lagnado L, Cervetto L, McNaughton PA. Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. J Physiol 1992; 455:111–42.

    PubMed  CAS  Google Scholar 

  83. Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphophate. Science 1992; 258:1812–5.

    Article  PubMed  CAS  Google Scholar 

  84. Huppertz B, Bauer PJ. Na+-Ca2+K+exchange in bovine retinal rod outer segments: quantitative characterization of normal and reversed mode. Biochim Biophys Acta 1994; 1189:119–26.

    Article  PubMed  CAS  Google Scholar 

  85. Naraghi M, Neher E. Linearized buffered Ca2+diffusion in microdomains and its implication for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 1997; 17:6961–73.

    PubMed  CAS  Google Scholar 

  86. Bauer PJ. The local Ca concentration profile in the vicinity of a Ca channel. Cell Biochem Biophys 2001; 35:49–61.

    Article  PubMed  CAS  Google Scholar 

  87. Liu X, Seno K, Nishizawa Y et al. Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 1994; 59:761–8.

    Article  PubMed  CAS  Google Scholar 

  88. Cooper N, Liu L, Yoshida A et al. The bovine rod outer segment guanylate cyclase, ROS-GC, is present in both outer segment and synaptic layers of the retina. J Mol Neurosci 1996; 6:211–22.

    Article  Google Scholar 

  89. Yang R-B, Garbers DL. Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 1997; 272:13738–42.

    Article  PubMed  CAS  Google Scholar 

  90. Molokanova E, Savchenko A, Kramer RH. Interaction of cyclic nucleotide-gated channel subnits and protein tyrosine kinase probed with genistein. J Gen Physiol 2000; 115:685–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauer, P.J. (2002). The Complex of cGMP-Gated Channel and Na+/ Ca2+K+Exchanger in Rod Photoreceptors. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics