Skip to main content

Ca2+-Channels in the RPE

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

The retinal pigment epithelium closely interacts with photoreceptors and helps to maintain the activity of photoreceptors. Investigations using patch-clamp techniques on cultured or freshly isolated retinal pigment epithelial cells from various species demonstrated the expression of voltage-dependent Ca2+channels with characteristics of L-type channels. Since retinal pigment epithelial cells rarely display changes of the membrane potential which lead to the activation of these Ca2+channels, their function seemed to be unclear. Recent findings shed light onto the possible role of these Cat+channels. First of all, the subtype of these ion channels could be identified as neuroendocrine subtype of L-type channels. Recent studies demonstrated that the neuroendocrine subtype of L-type channels is regulated by serine/ threonine kinases and protein tyrosine kinases. These phosphorylation-dependent regulatory mechanisms lead to Ca2+fluxes into the cell which are independent of changes in the membrane potential and induced by a shift in the voltage-dependence of these ion channels. The regulation modality implied that L-type Ca2+channels play an important role in signal transduction pathways which are important for a communication between retinal pigment epithelium and photoreceptors. L-type Ca2+channels in the retinal pigment epithelium seem to be involved in the regulation of secretion of various factors, in growth factor-dependent intracellular signalling and in the regulation of the phagocytosis of photoreceptor outer membranes. Thus, voltage-dependent Ca2+channels in the retinal pigment epithelium are of importance for the function of photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 1985; 60(4):327–46.

    Article  PubMed  CAS  Google Scholar 

  2. Bok D. Retinal photoreceptor-pigment epithelium interactions. Invest Ophthalmol Vis Sci 1985; 26(12):1659–94.

    PubMed  CAS  Google Scholar 

  3. Young RW, Bok D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biochem 1969; 42:392–403.

    CAS  Google Scholar 

  4. LaVail MM. Circadian nature of rod outer segment disc shedding in the rat. Invest Ophthalmol Vis Sci 1980; 19:407–411.

    PubMed  CAS  Google Scholar 

  5. Timmers AM, Van Groningen-Luyben DA, de Grip WJ. Uptake and isomerization of all-trans retinal by isolated bovine retinal pigment epithelial cells: further clues to the visual cycle. Exp Eye Res 1991; 52:129–138.

    Article  PubMed  CAS  Google Scholar 

  6. Gordon WC, Rodriguez de Turco EB, Bazan NG. Retinal pigment epithelial cells play a central role in the conservation of docosahexanoic acid by photoreceptor cells after shedding and phagocytosis.CuffEye Res 1992; 11:73–83.

    Article  CAS  Google Scholar 

  7. Tanihara H, Inatani M, Honda Y. Growth factors and their receptors in the retina and pigment epithelium. Prog Ret Eye Res 1997; 16:271–301.

    Article  CAS  Google Scholar 

  8. Tanihara H, Yoshida M, Matsumoto M et al. Identification of transforming growth factor-beta expressed in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1993; 34(2):413–419.

    PubMed  CAS  Google Scholar 

  9. Bost LM, Aotaki-Keen AE, Hjelmeland LM. Cellular adhesion regulates bFGF gene expression in human retinal pigment epithelial cells. Exp Eye Res 1994; 58:545–552.

    Article  PubMed  CAS  Google Scholar 

  10. Wen R, Song Y, Cheng T, et al. Injury-induced upregulation of bFGF and CNTF mRNAs in the rat retina. J Neurosci 1995; 15:7377–7385.

    PubMed  CAS  Google Scholar 

  11. Edwards RB, Szamier RB. Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science 1977; 197(4307):1001–3.

    Article  PubMed  CAS  Google Scholar 

  12. Goldman AI, PJ OB. Phagocytosis in the retinal pigment epithelium of the RCS rat. Science 1978; 201(4360):1023–5.

    Article  PubMed  CAS  Google Scholar 

  13. Young RW. Pathophysiology of age-related macular degeneration. Sury Ophthalmol 1987; 31(5):291–306.

    Article  CAS  Google Scholar 

  14. Amin R, Puklin JE, Frank RN. Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 1994; 35(8):3178–88.

    PubMed  CAS  Google Scholar 

  15. Reddy VM, Zamora RL, Kaplan HJ. Distribution of growth factors in subfoveal neovascular membranes in age-related macular degeneration and presumed ocular histoplasmosis syndrome. Am J Ophthalmol 1995; 120(3):291–301.

    PubMed  CAS  Google Scholar 

  16. Frank RN. Growth factors in age-related macular degeneration: pathogenic and therapeutic implications. Ophthalmic Res 1997; 29(5):341–53.

    Article  PubMed  CAS  Google Scholar 

  17. Kliffen M, Sharma HS, Mooy CM et al. Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol 1997; 81(2):154–62.

    Article  PubMed  CAS  Google Scholar 

  18. Redmond TM, Yu S, Lee E et al. RPEG5 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 1998; 20(4):344–51.

    Article  PubMed  CAS  Google Scholar 

  19. Redmond TM, Hamel CP. Genetic analysis of RPE65: from human disease to mouse model. Methods Enzymol 2000; 316:705–24.

    Article  PubMed  CAS  Google Scholar 

  20. Bosl MR, Stein V, Hubner C et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon CIC-2 Cl(-) channel disruption. Embo J 2001; 20(6):1289–1299.

    Article  PubMed  CAS  Google Scholar 

  21. Seeliger MW, Grimm C, Stahlberg F et al. New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat Genet 2001; 29(1):70–4.

    Article  PubMed  CAS  Google Scholar 

  22. Ueda Y, Steinberg RH. Voltage-operated calcium channels in fresh and cultured rat retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1993; 34(12):3408–18.

    PubMed  CAS  Google Scholar 

  23. Strauß O, Wienrich M. Cat+-conductances in cultured rat retinal pigment epithelial cells. 1 Cell Physiol 1994; 160:89–96.

    Article  Google Scholar 

  24. Strauß O, Mergler S, Wiederholt M. Regulation of L-type calcium channels by tyrosine kinase and protein kinase C in cultured rat and human retinal pigment epithelial cells. FASEB J 1997; 11:859–867.

    PubMed  Google Scholar 

  25. Mergler S, Steinhausen K, Wiederholt M, Strauß O. Altered regulation of L-type channels by protein kinase C and protein tyrosine kinases as a pathophysiologic effect in retinal degeneration. FASEB J. 1998; 12:1125–1134.

    PubMed  CAS  Google Scholar 

  26. Perez-Reyes E, Schneider T. Molecular biology of calcium channels. Kidney International 1995; 48:1111–1124.

    Article  PubMed  CAS  Google Scholar 

  27. Catterall WA. Structure and function of neuronal Cat+channels and their role in neurotransmitter release. Cell Calcium 1998; 24(5–6):5–6.

    Article  PubMed  CAS  Google Scholar 

  28. Catterall WA. Structure and regulation of voltage-gated Cat+channels. Annu Rev Cell Dev Biol 2000; 16:521–55.

    Article  PubMed  CAS  Google Scholar 

  29. Strauss O, Buss F, Rosenthal R et al. Activation of neuroendocrine L-type channels (alphalD subunits) in retinal pigment epithelial cells and brain neurons by pp60`“5” Biochem Biophys Res Commun. 2000; 270(3):806–10.

    Article  PubMed  CAS  Google Scholar 

  30. Steinberg RH, Linsenmeier RA, Griff ER. Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram. In: Osborne N, Chader GJ, eds. Progress in Retinal and Eye Research. Vol 4. Oxford: Pergamon Press, 1985:33–66.

    Google Scholar 

  31. LaCour MD, Lund-Andersen H, Zeuthen T. Potassium transport of the frog retinal pigment epithelium: autoregulation of potassium activity in the subretinal space. J Physiol 1986; 375:461–479.

    CAS  Google Scholar 

  32. Gallemore RP, Steinberg RH. Light-evoked modulation of basolateral membrane Cl-conductance in chick retinal pigment epithelium: the light peak and fast oscillation. J Neurophysiol 1993; 70(4): 1669–80.

    PubMed  CAS  Google Scholar 

  33. LaCour MD. Ion transport in the retinal pigment epithelium. A study with double barrelled ion-selective microelectrodes. Acta Ophthalmol Suppl 1993, 209:1–32.

    Google Scholar 

  34. Murphy TH, Worley PF, Baraban JM. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 1991; 7(4):625–35.

    Article  PubMed  CAS  Google Scholar 

  35. Bading H, Ginty DD, Greenberg ME. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 1993; 260(5105):181–6.

    Article  PubMed  CAS  Google Scholar 

  36. Ashcroft FM, Proks P, Smith PA et al. Stimulus-secretion coupling in pancreatic beta cells. J Cell Biochem 1994; 55:54–65.

    Article  PubMed  CAS  Google Scholar 

  37. Rosen LB, Ginty DD, Greenberg ME. Calcium regulation of gene expression. Adv in Second Messenger Phosphoprotein Res 1995; 30:225–53.

    Article  CAS  Google Scholar 

  38. Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca2-and stimulus duration-dependent switch for hippocampal gene expression. Cell 1996; 87(7):1203–14.

    Article  PubMed  CAS  Google Scholar 

  39. Deisseroth K, Heist EK, Tsien RW. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 1998; 392(6672):198–202.

    Article  PubMed  CAS  Google Scholar 

  40. Rosenthal R, Thieme H, Strauss O. Fibroblast growth factor receptor 2 (FGFR2) in brain neurons and retinal pigment epithelial cells act via stimulation of neuroendocrine L-type channels (Ca(v)1.3). FASEB J 2001; 15(6):970–7.

    Article  PubMed  CAS  Google Scholar 

  41. D’ Cruz PM, Yasumura D, Weir J et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Mol Genet 2000; 9(4):645–51.

    Google Scholar 

  42. Herron WL, Riegel BW, Myers OE et al. Retinal dystrophy in the rat-a pigment epithelial disease. Invest Ophthal/mol Vis Sci 1969; 8:595–604.

    CAS  Google Scholar 

  43. Bok D, Hall MO. The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 1971; 49:664–682.

    Article  PubMed  CAS  Google Scholar 

  44. Strauss O, Wienrich M. Cultured retinal pigment epithelial cells from RCS rats express an increased calcium conductance compared with cells from non-dystrophic rats. Pflagers Arch 1993; 425(1–2):1–2.

    Article  CAS  Google Scholar 

  45. Seino S, Chen L, Seino M et al. Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci USA 1992; 89(2):584–588.

    Article  PubMed  CAS  Google Scholar 

  46. Yaney GC, Wheeler MB, Wei X et al. Cloning of a novel alpha 1-subunit of the voltage-dependent calcium channel from the beta-cell. Mol Endocrinol 1992; 6(12):2143–52.

    Article  PubMed  CAS  Google Scholar 

  47. Bost LM, Aotaki-Keen AE, Hjelmeland LM. Coexpression of FGF-5 and bFGF by the retinal pigment epithelium in vitro. Exp Eye Res 1992; 55:727–734.

    Article  PubMed  CAS  Google Scholar 

  48. Yoshida M, Tanihara H, Yoshimura N. Platelet-derived growth factor gene expression in cultured retinal pigment epithelial cells. Biochem Biophys Res Commun 1992; 189:66–71.

    Article  PubMed  CAS  Google Scholar 

  49. Yoshimura N, Kuriyama S, Iwaki M et al. Growth factor dependent phosphorylation of membrane proteins in cultured human retinal pigment epithelial cells. Curr Eye Res 1992; 11:997–1004.

    Article  PubMed  CAS  Google Scholar 

  50. Steele FR, Chader GJ, Johnson LV et al. Pigment epithelium-derived factor: Neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci USA 1993; 90(4):1526–1530.

    Article  PubMed  CAS  Google Scholar 

  51. Shima DT, Adamis AP, Ferrara N et al. Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med 1995; 1:182–193.

    PubMed  CAS  Google Scholar 

  52. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61(2):203–12.

    Article  PubMed  CAS  Google Scholar 

  53. Fantl WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993; 62:453–81.

    Article  PubMed  CAS  Google Scholar 

  54. Bence-Hanulec KK, Marshall J, Blair LA. Potentiation of neuronal L calcium channels by IGF-1 requires phosphorylation of the alphal subunit on a specific tyrosine residue. Neuron 2000 Jul; 27(1):121–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenthal, R., Strauß, O. (2002). Ca2+-Channels in the RPE. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics