The Function of Neuropilin/L1 Complex

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 515)


L1, a cell adhesion molecule of the Ig superfamily (IgCAM) plays a critical role in the formation of neuronal networks. This is reflected by the variety of clinical signs associated with the X-linked recessive neurological disorder that is caused by mutations in the Ll gene. LI regulates the formation of axon fascicles and promotes neurite outgrowth through interaction with a wide spectrum of binding partners including cell adhesion molecules and extra-cellular matrix components. Here we describe the emerging evidence that indicates, in addition to these well-established functions, that Ll participates in the signaling of a secreted guidance cue of the Semaphorin family, Sema3A. Three types of experimental evidence support LI as a key component of the Sema3A receptor complex. First, Li-deficient axons do not respond to Sema3A-induced chemorepulsion. Second, L1 and NRPI, the neuropilin responsible for Sema3A binding, associate through their extracellular domains, forming a cell surface heterocomplex. Third, a soluble form of Ll modulates axonal responsiveness to Sema3A, by converting Sema3A chemorepulsion into attraction.


Growth Cone Neural Cell Adhesion Molecule Axon Guidance Cortical Slice Ventral Spinal Cord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tamagnone L, Comoglio PM. Signalling by scmaphorin receptors: cell guidance and beyond.Trends Cell Biol 2000;10, 377–383.CrossRefGoogle Scholar
  2. 2.
    Cheng HJ, Bagri A, Yaron A et al. Plexin-a3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 2001 25;32(2):249–263.CrossRefGoogle Scholar
  3. 3.
    Kamiguchi H, Lemmon V. IgCAMs: bidirectional signals underlying neurite growth.Curr Opin Cell Biol 2000;12(5):598–605.PubMedCrossRefGoogle Scholar
  4. 4.
    Doherty P, Williams G, Williams EJ. CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol Cell Neurosci 2000;16(4):283–295.PubMedCrossRefGoogle Scholar
  5. 5.
    Brummendorf T, Rathjen FG. Structure/function relationships of axon-associated adhesion receptors of the immunoglobulin superfamily. Curr Opin Neurobiol 1996; 6, 584–593.PubMedCrossRefGoogle Scholar
  6. 6.
    Grant SG, O’Dell TJ. Multiprotein complex signaling and the plasticity problem.Curr Opin Neurobiol 2001;11(3):363–368.PubMedCrossRefGoogle Scholar
  7. 7.
    Kenwrick S, Doherty P. Neural cell adhesion molecule LI: relating disease to function.Bioessays. 1998;20(8):668–675.Google Scholar
  8. 8.
    Kamiguchi H, Hlavin ML, Lemmon V. Role of LI in neural development: what the knockouts tell us. Mol Cell Neurosci 1998;12(1–2):48–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Kenwrick S, Watkins A, De Angelis E. Neural cell recognition molecule LI: relating biological complexity to human disease mutations.Hum Mol Genet 2000 12;9(6):879–886.Google Scholar
  10. 10.
    Dahme M, Bartsch U, Martini R et al. Disruption of the mouse LI gene leads to malformations of the nervous system. Nat Genet 1997 17, 346–349.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen NR, Taylor JS, Scott LB et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule LI. Curr Biol 1998 8, 26–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Stanfield BB. The development of the corticospinal projection. Prog Neurobiol 1992;38(2):169–202.PubMedCrossRefGoogle Scholar
  13. 13.
    Joosten EA, Bar DP. Axon guidance of outgrowing corticospinal fibres in the rat.J Anat 1999;194 (Pt 1):15–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Castellani V, Chedotal A, Schachner M et al. Analysis of LI-deficient mouse phenotype reveals a cross-talk between Sema3A and LI signaling pathways in axonal guidance. Neuron 2000; 27, 237–249.PubMedCrossRefGoogle Scholar
  15. 15.
    Culotti JG, Merz DC. DCC and netrins. Curr Opin Cell Biol 1998;10(5):609–613.PubMedCrossRefGoogle Scholar
  16. 16.
    Guthrie S. Axon guidance: Robos make the rules. Curr Biol 2001;17;11(8):R300–3.CrossRefGoogle Scholar
  17. 17.
    Masuda T, Okado N, Shiga T. The involvement of axonin-1/SC2 in mediating notochord-derived chemorepulsive activities for dorsal root ganglion neurites. Dev Biol. 2000; 15;224(2):112–121.CrossRefGoogle Scholar
  18. 18.
    Song H, Ming G, He Z et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 1998; 281, 1515–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Nayeem N. Silletti S, Yang X et al. A potential role for the plasmin(ogen) system in the posttranslational cleavage of the neural cell adhesion molecule LI.J CellSci 1999; 112, 4739–4749.PubMedGoogle Scholar
  20. 20.
    Gutwein P, Oleszewski M, Mechtersheimer S et al. Role of Src kinases in the ADAMmediated release of LI adhesion molecule from human tumor cells. J Biol Chem 2000; 19;275(20):15490–7CrossRefGoogle Scholar
  21. 21.
    Mechtersheimer S, Gutwein P, Agmon-Levin N et al. Ectodomain shedding of LI adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 2001;12,661–674.CrossRefGoogle Scholar
  22. 22.
    Dodd J, Jessell TM. Axon guidance and the patterning of neuronal projections in vertebrates.Science 1988; 4;242(4879):692–9.CrossRefGoogle Scholar
  23. 23.
    Bolz J, Kossel A, Bagnard D. The specificity of interactions between the cortex and the thalamus. Ciba Found Symp. 1995;193:173–91; discussion 192–9.PubMedGoogle Scholar
  24. 24.
    Bagnard D, Chounlamountri N, Puschel AW et al. Axonal surface molecules act in combination with semaphorin 3a during the establishment of corticothalamic projections. Cereb Cortex 2001;11(3):278–285.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacob J, Hacker A, Guthrie S. Mechanisms and molecules in motor neuron specification and axon pathfinding.Bioessays 2001;23(7):582–595.PubMedCrossRefGoogle Scholar
  26. 26.
    Fujisawa H, Kitsukawa T, Kawakami A et al, Roles of a neuronal cell-surface molecule, neuropilin, in nerve fiber fasciculation and guidance. Cell Tissue Res 1997;290(2):465–470.PubMedCrossRefGoogle Scholar
  27. 27.
    Kawakami A, Kitsukawa T, Takagi S et al. Developmentally regulated expression of a cell surface protein, neuropilin, in the mouse nervous system. J Neurobiol 1996;29(1):1–17.PubMedCrossRefGoogle Scholar
  28. 28.
    Kitsukawa T, Shimizu M, Sanbo M et al. Neuropilin-semaphorin IIt/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 1997;19, 995–1005.PubMedCrossRefGoogle Scholar
  29. 29.
    Stoeckli ET, Landmesser LT. Axon guidance at choice points. Curr Opin Neurobiol 1998;8(0:73–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaprielian Z, Imondi R, Runko E. Axon guidance at the midline of the developing CNS. Anat Rec 2000;15;261(5):176–197.CrossRefGoogle Scholar
  31. 31.
    Song HJ, Poo MM. Signal transduction underlying growth cone guidance by diffusible factors.Curr Opin Neurobiol 1999;9(3):355–363.PubMedCrossRefGoogle Scholar
  32. 32.
    Dickson BJ. Rho GTPases in growth cone guidance. Cuff Opin Neurobiol 2001;11(1):103–110.CrossRefGoogle Scholar
  33. 33.
    Stein E, Tessier-Lavigne M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 2001;9;291(5510):1928–1938.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Laboratoire de Neurogenése et Morphogenése dans le Développement et chez l’Adulte, UMR 6156Université de la Méditerranée, IBDM, Parc Scientifique de LuminyMarseille cedex 9France

Personalised recommendations