Advertisement

Electron impact cross sections with O atoms; O2 and O3 molecules — a theoretical survey

  • K N Joshipura
  • B K Antony
  • V Minaxi

Abstract

Atomic oxygen together with O2 and O3 molecules forms a unique trio in the atomic-molecular regime. Besides the all-important O & O2 present in our atmosphere, ozone is a crucial factor in controlling UV radiations reaching Earth’s surface. Studies of electron impact on O2 are useful in the analysis of atmospheric phenomena like aurora and the airglow1. Investigations of electron scattering from these molecules have a variety of applications such as in gaseous electronics (e.g. discharge-dielectrics), plasma physics, and planetary atmospheres2. As against several cross section calculations and measurements available on O and O2 the electron scattering studies on the O3 molecules are only a few.

Keywords

Total Cross Section Cross Section Calculation Rotational Excitation Total Ionization Cross Section Total Inelastic Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G Dalba, P Fornasini, R Grisenti, G Ranieri & A Zecca, 1980, J. Phys. B 13, pp. 4695ADSCrossRefGoogle Scholar
  2. 2.
    Y F Hsieh, W E Kauppila, C K Kwan, J S Smith, T S Stein & M N Uddin, 1987, Phys. Rev. A 38, pp. 1207Google Scholar
  3. 3.
    W R Thomson, M B Shah & H B Gilbody, 1995, J Phys. B 28, pp. 1321ADSCrossRefGoogle Scholar
  4. 4.
    E Krishnakumar &S K Srivastava, 1992, Int. J Mass. Spec. & Ion Proc. 113, pp. 1ADSCrossRefGoogle Scholar
  5. 5.
    K A Newson, S M Lee, S D Price & N J Mason, 1995, Int. J Mass. Spec. & Ion Proc. 148, pp. 203ADSCrossRefGoogle Scholar
  6. 6.
    J L de Pablos, P Tegeder, A Williart, F Blanco, G Garcia & N J Mason, 2001, J Phys. B At. Mol. Opt. Phys. 35, pp. 865CrossRefGoogle Scholar
  7. 7.
    C F Bunge, J A Barrientos & A V Bunge, 1993, At. Data Nucl. Data Tables, 53, pp. 113ADSCrossRefGoogle Scholar
  8. 8.
    K N Joshipura & V Minaxi, 1997, Phys. Lett. A 224, pp. 361ADSCrossRefGoogle Scholar
  9. 9.
    S H Patil, 1999, At. Data Nucl. Data Tables, 71, pp. 41ADSCrossRefGoogle Scholar
  10. 10.
    D R Lide, “CRC Handbook of Physics and Chemistry”, (Boca Raton, FL: 2000), pp.9–42Google Scholar
  11. l.K N Joshipura & B K Antony, 2001, Phys. Lett. A 289, pp. 323ADSCrossRefGoogle Scholar
  12. 12.
    K N Joshipura, V Minaxi & U M Patel, 2001, J. Phys. B 34, pp. 509ADSCrossRefGoogle Scholar
  13. 13.
    D Staszewska, D W Schwenke, D Thirumalai & D G Truhlar, 1984, Phys. Rev. A 29, pp.3078ADSCrossRefGoogle Scholar
  14. 14.
    C.J. Joachain, “Quantum Collision Theory” (North Holland Pub., 1983), pp.110Google Scholar
  15. 15.
    H C Straub, P Renault, B G Lindsay, K A Smith & R F Stebbings, 1996, Phys. Rev. A 54, pp. 2146.ADSCrossRefGoogle Scholar
  16. 16.
    K N Joshipura & P M Patel, 1996, J. Phys. B 29, pp. 3925ADSCrossRefGoogle Scholar
  17. 17.
    M W Seigel, 1982, Int. J. Mass Spectrom. Ion Phys., 44, pp. 19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • K N Joshipura
    • 1
  • B K Antony
    • 1
  • V Minaxi
    • 2
  1. 1.Dept of PhysicsSardar Patel UniversityVallabh VidyanagarIndia
  2. 2.V P &R P T P Science CollegeVallabh VidyanagarIndia

Personalised recommendations