Electron Impact Excitation of Astrophysically Important Neutral Atoms

  • Swaraj S. Tayal


The cosmically abundant carbon, nitrogen, oxygen, and sulfur elements have their resonance transitions in the ultraviolet (UV) and far ultraviolet (FUV) wavelength domains of the spectrum. These atomic species are detected in a variety of astrophysical objects through emission lines. For example, several strong emission features of atomic oxygen and sulfur have been identified in spectra from Jupiter’s satellite Io and the Io torus and in stellar atmospheres in both ground and space based observations. The plasma diagnostic techniques based on spectroscopic line intensities, profiles and wavelengths are employed to understand and predict physical processes and conditions such as pressure, density, and chemical composition of the emitting plasma. The accuracy and completeness of data for a variety of atomic and molecular processes play a crucial role in these determinations. The non-Local Thermodynamic Equilibrium (NLTE) model calculations require not only complete data for radiative processes such as oscillator strengths and photoionization cross sections and rates, but also for collisional rates between the atomic species and electrons.


Oscillator Strength Excitation Cross Section Dissociative Excitation Electron Impact Excitation Incident Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tayal, S. S., 1997, J. Phys. B 30, L551-L555; 1998, Astrophys. J., 497,493–497.ADSCrossRefGoogle Scholar
  2. Tayal, S. S., 1998, Astrophys. J., 497,493–497.ADSCrossRefGoogle Scholar
  3. 2.
    Zatsarinny, O., and Tayal, S. S., 2001, J. Phys. B 34, 1299–1319.ADSCrossRefGoogle Scholar
  4. 3.
    Zatsarinny, O., and Tayal, S. S., 2001, J. Phys. B 34, 3383–3400.ADSCrossRefGoogle Scholar
  5. 4.
    Berrington, K. A., Eissner, W. B., and Norrington, P. N., 1995, Comput. Phys. Commun. 92, 290–420.1.ADSCrossRefGoogle Scholar
  6. 5.
    Tayal, S. S., 2002, Phys. Rev. A (to be published).Google Scholar
  7. 6.
    Tayal, S. S., and Henery, R. J. W., 1989, Phys. Rev. A 39, 4531–4536.ADSCrossRefGoogle Scholar
  8. 7.
    Tayal, S. S., 1992, J. Phys. B 25, 2639–2647.ADSCrossRefGoogle Scholar
  9. 8. Kanik, I., Johnson, P. V., Das, M. B., Khakoo, M. A., and Tayal, S. S., J. Phys. B 34, 2647–2665.Google Scholar
  10. 9.
    Doering, J. P., and Yang, J., 2001, J. Geophys. Res. 106, 203–209.ADSCrossRefGoogle Scholar
  11. 10.
    Doering, J. P., 1992, J. Geophys. Res. 97, 19,531–19,534.Google Scholar
  12. 11.
    Berrington, K. A., Burke, P. G., and Robb, W. D., 1975, J. Phys. B 8, 2500–2511.ADSCrossRefGoogle Scholar
  13. 12.
    Ramsbottom, C. A., and Bell, K. L, 1994, Phys. Scr. 50, 666–671.ADSCrossRefGoogle Scholar
  14. 13.
    Tayal, S. S., and Beatty, C. A., 1999, Phys. Rev. A 59, 3622–3631.ADSCrossRefGoogle Scholar
  15. 14.
    Yang, J., and Doering, J. P., 1996, J. Geophys. Res. 101, 21,765–21,768.Google Scholar
  16. 15.
    Thomas, M. R. J., Bell, K. L., and Berrington, K. A., 1997, J. Phys. B, 30, 4599–4606.ADSCrossRefGoogle Scholar
  17. 16.
    Vaughan, S. O., and Doering, J. P., 1987, J. Geophys. Res. 92, 7749–7752.ADSCrossRefGoogle Scholar
  18. 17.
    Zatsarinny, O., and Tayal, S. S., 2002, J. Phys. B 35, 2493–2503.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Swaraj S. Tayal
    • 1
  1. 1.Department of PhysicsClark Atlanta UniversityAtlantaUSA

Personalised recommendations