Skip to main content
  • 247 Accesses

Abstract

Classical mechanics is known often to offer a good description of molecular dynamical processes and hence this approach is widely used to simulate the dynamics of molecular systems. Classical mechanics allows for simulation of large systems. Large means in this connection systems consisting of several thousands of atoms or molecules. The reason for this is that the computational effort in classical dynamics scales about linearly with the size of the system, i.e. with the number of atoms N. Hence, within the classical mechanical description it is therefore possible to simulate phenomena as for instance protein folding or phase transitions. However, for a number of dynamical processes the classical mechanical description appears to be insufficient. In general this is so for what could be called “rare events”, i.e. processes which have probabilities of the order 10−3 or smaller. Such processes could for instance be reactions where a barrier has to be tunneled through or state resolved vibrational or electronic transitions which are classically forbidden. By classically forbidden we understand processes which for dynamical reasons do not occur in classical mechanics. Thus, for a large class of problems involving for instance chemical reactions with activation barrier, vibrational and electronic transitions we will have to use the correct description, namely the quantum description. However, the quantum mechanical approach has the problem that the computationally effort scales exponentially as 103N, i.e. even today problems with N=3~4 (three to four atoms) can only be solved “exactly” if one or more of the atoms are hydrogen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.D. Billing, The quantum-classical theory, Oxford University Press, New York 2002.

    Google Scholar 

  2. Feynmann, R. P., and Hibbs, A. R., 1965, Quantum Mechanics and Path Integrals, McGraw Hill, New York.

    Google Scholar 

  3. Pechukas, P., 1969, Phys. Rev. 181; 166-173, 174.

    Article  ADS  Google Scholar 

  4. Miller, W.H., 1970, J. Chem. Phys. 53, 1949, 3578.

    Article  MathSciNet  ADS  Google Scholar 

  5. Marcus, R. A., 1970, Chem. Phys. Lett. 7, 525.

    Article  ADS  Google Scholar 

  6. van Vleck, J. H., 1928, Proc. Nat. Acad. Sci. 14, 178-188.

    Article  ADS  MATH  Google Scholar 

  7. Herman, M. F., and Kluk, E., 1984, Chem. Phys. 91, 27-34.

    Article  ADS  Google Scholar 

  8. Miller, W. H., 1991, J. Chem. Phys. 95, 9428.

    Article  ADS  Google Scholar 

  9. Lebedeff, S. A., 1968,Phys. Rev. 165, 1399.

    Article  ADS  Google Scholar 

  10. Heller, E. J., 1975, J. Chem. Phys. 62, 1544-1555

    Article  ADS  Google Scholar 

  11. Heller, E. J., 1975, J. Chem. Phys. 1976, 64, 63; 1977, 66, 5777.

    Article  MathSciNet  ADS  Google Scholar 

  12. Sawada, S. I., Heather, R., Jackson, B., and Metiu, H.; 1985, J. Chem. Phys. 83, 3009.

    Article  ADS  Google Scholar 

  13. Martinez, T. J., Ben-Nun, M.; and Levine, R. D., 1996, J. Phys. Chem. 100, 7884.

    Article  Google Scholar 

  14. Child, M. S., 1974, Molecular Collision Theory”, Academic Press, London; 1991, Semiclassical Mechanics with Molecular Applications, Clarendon Press, Oxford.

    Google Scholar 

  15. Manz, J., 1997, in Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic- Scale Resolution, Ed. V. Sundstöm, Imperial College Press, London, pp.80-318.

    Google Scholar 

  16. Kay, K. G., 1997, J. Chem. Phys., 107, 2313-2328.

    Article  ADS  Google Scholar 

  17. Adhikari S., and Billing, G. D., 2000, J. Chem. Phys. 113, 1409-1414

    Article  ADS  Google Scholar 

  18. Billing, G. D., and Adhikari, S., 2000, Chem. Phys. Lett. 321, 197-204.

    Article  ADS  Google Scholar 

  19. Billing, G. D., 2001, Chem. Phys. Lett. 343, 130-138.

    Article  ADS  Google Scholar 

  20. Billing, G. D., 2001, J. Chem. Phys. 114, 6641-6653; 2001

    Article  ADS  Google Scholar 

  21. Billing, G. D., 2001 Int. J. Quant. Chem. 84, 467-478.

    Article  Google Scholar 

  22. Billing, G. D., 2001, Chem. Phys. 264, 71-80.

    Article  ADS  Google Scholar 

  23. Billing, G. D., 2001, J. Chem. Phys. 105, 2340-2347.

    Article  Google Scholar 

  24. Billing, G. D., 1997, J. Chem. Phys. 107, 4286-4294.

    Article  ADS  Google Scholar 

  25. Billing, G. D., 1999, J. Chem. Phys. lll, 48-53.

    Google Scholar 

  26. See for instance Coalson, R. D., and Karplus, M., 1982, Chem. Phys. Lett. 90, 301-305

    Article  ADS  Google Scholar 

  27. Meyer, H.-D., 1981, Chem. Phys. 61, 335;

    Article  ADS  Google Scholar 

  28. Kay, K. G., 1992, Phys. Rev. A 46, 1213-1232;

    Article  MathSciNet  ADS  Google Scholar 

  29. Møller, K. B., and Henriksen N. E., 1996, J. Chem. Phys.105 5037-5047.

    Article  ADS  Google Scholar 

  30. Bohm, D., 1952,, Phys. Rev. 85, 166-179; ibid. 180-193.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Billing, G. D., 2000, J. Mol. Structure (Theochem), 501-502, 519-528; 2001

    Article  Google Scholar 

  32. Billing, G. D., 2000, Phys. Chem. Chem.. Phys. 1, 4687-4694.

    Article  Google Scholar 

  33. Billing, G. D., 2000, Quantum Classical Methods, in Lecture Notes, Eds. Lagana, A.; Riganelli, A. Springer Verlag; Berlin.

    Google Scholar 

  34. See e.g. Cullum, J. K., and Willoughby, R. A., 1985, Lanczos Algorithms for large Symmetrix Eigenvalue Computations, Birkhaüser, Boston.

    Google Scholar 

  35. Park, T. J., and Light, J. C., 1986, J. Chem. Phys. 85, 5870-5876.

    Article  ADS  Google Scholar 

  36. Billing, G. D., and Mikkelsen, K. V., 1997, Advanced Molecular Dynamics and Chemical Kinetics, Wiley; New York.

    MATH  Google Scholar 

  37. Billing, G. D. unpublished results.

    Google Scholar 

  38. Coletti, C., and Billing, G. D. to be published.

    Google Scholar 

  39. Billing, G. D., 2001, Chem. Phys. Lett. 339, 237-242.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Billing, G.D. (2002). Quantum-dressed Classical Mechanics. In: Mohan, M. (eds) Current Developments in Atomic, Molecular, and Chemical Physics with Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0115-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0115-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4930-3

  • Online ISBN: 978-1-4615-0115-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics