Skip to main content
  • 241 Accesses

Abstract

The hydrodynamic formulation of quantum mechanics leads to an attractive approach for solving the Schrodinger time-dependent wave equation. An initial wavepacket is discretized into an ensemble of fluid elements and equations of motion are integrated to find the probability density and action function (wavefunction phase) along the trajectories followed by the fluid elements. Fluid elements propagating along the quantum trajectories are correlated with each other through the nonlocal Bohm quantum potential. These equations of motion are integrated in the Lagrangian picture of fluid motion. The equations of motion are reviewed and then the following four applications are described: barrier tunneling and above barrier reflection; electronic nonadiabiatic processes, multi-mode system-bath dynamics, and the suppression of quantum interference (the process known as decoherence).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. E. Madelung, Z. Phys. 40, 322 (1926).

    Article  ADS  MATH  Google Scholar 

  2. L. de Broglie, An Introduction to the Study of Wave Mechanics (Dutton, New York, 1930).

    MATH  Google Scholar 

  3. D. Bohm, Phys. Rev. 85, 167 (1952)

    ADS  Google Scholar 

  4. D. Bohm, Phys. Rev. 85, 180 (1952).

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Bohm and B. J. Hiley, The Undivided Universe (Routeledge, London, 1993).

    Google Scholar 

  6. P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, New York, 1993).

    Book  Google Scholar 

  7. B. M. Deb S. K. Ghosh, J. Chem. Phys. 77, 342 (1982)

    Article  ADS  Google Scholar 

  8. A. S. Bamzai and B. M. Deb, Rev. Mod. Phys. 53, 95 (1981)

    Article  ADS  Google Scholar 

  9. S. K. Ghosh and B. M. Deb, Int. J. Quantum Chem. 22, 871 (1982)

    Article  Google Scholar 

  10. S. K. Ghosh and M. Berkowitz, J. Chem. Phys. 83, 2976 (1985)

    Article  ADS  Google Scholar 

  11. B. K. Dey and B. M. Deb, J. Chem. Phys. 110, 6229 (1999)

    Article  ADS  Google Scholar 

  12. B. M. Deb and P. K. Chattaraj, Phys. Rev. A 39, 1696 (1989)

    Article  ADS  Google Scholar 

  13. C. L. Lopreore and R. E. Wyatt, Phys. Rev. Lett, 82, 5190 (1999).

    Article  ADS  Google Scholar 

  14. R. E. Wyatt, Chem. Phys. Lett. 313, 189 (1999).

    Article  ADS  Google Scholar 

  15. R. E. Wyatt, J. Chem. Phys. 111, 4406 (1999).

    Article  ADS  Google Scholar 

  16. R. E. Wyatt, D. J. Kouri, and D. K. Hoffman, J. Chem. Phys. 112, 10730 (2000).

    Article  ADS  Google Scholar 

  17. C. L. Lopreore and R. E. Wyatt, Chem. Phys. Lett. 325, 73 (2000).

    Article  ADS  Google Scholar 

  18. E. R. Bittner and R. E. Wyatt, J. Chem. Phys. 113, 8888 (2000).

    Article  ADS  Google Scholar 

  19. R. E. Wyatt and E. R. Bittner, J. Chem. Phys. 113, 8898 (2000).

    Article  ADS  Google Scholar 

  20. K. Na and R. E. Wyatt, Int. J. Quantum Chem. 81, 206 (2001).

    Article  Google Scholar 

  21. R. E. Wyatt, C. L. Lopreore, and G. Parlant, J. Chem. Phys. 114, 5113 (2001).

    Article  ADS  Google Scholar 

  22. C. L. Lopreore and R. E. Wyatt, J. Chem. Phys. 116, 1228 (2002).

    Article  ADS  Google Scholar 

  23. R. E. Wyatt, and K. Na, Phys. Rev. E 65, 016702 (2002).

    Article  ADS  Google Scholar 

  24. K. Na and R. E. Wyatt, Phys. Rev. A, to be published.

    Google Scholar 

  25. D. K. Dey, A. Askar, and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998).

    Article  ADS  Google Scholar 

  26. D. K. Dey, A. Askar, and H. A. Rabitz, Chem. Phys. Lett. 297, 247 (1998).

    Article  ADS  Google Scholar 

  27. F. Sales Mayor, A. Askar, and H. A. Rabitz, J. Chem. Phys. 111, 2423 (1999).

    Article  ADS  Google Scholar 

  28. B. K. Dey, H. A. Rabitz, and A. Askar, Phys. Rev. A 61, 3412 (2000).

    Article  ADS  Google Scholar 

  29. X. G. Hu, T. S. Ho, and H. A. Rabitz, Phys. Rev. E 61, 5967 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  30. J. H. Weiner and Y. Partom, Phys. Rev. 187, 1134 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  31. J. H. Weiner and Y. Partem, Phys. Rev. B 1, 1533 (1970).

    Article  ADS  Google Scholar 

  32. J. H. Weiner and A. Askar, J. Chem. Phys. 54, 1108 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  33. J. H. Weiner and A. Askar, J. Chem. Phys. 54, 3534 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Askar and J. H. Weiner, Am. J. Phys. 39, 1230 (1971).

    Article  ADS  Google Scholar 

  35. H. Y. Kim and J. H. Weiner, Phys. Rev. B 7, 1353 (1973).

    Article  ADS  Google Scholar 

  36. J. Maddox and E. R. Bittner, J. Chem. Phys. 115, 6309 (2001).

    Article  ADS  Google Scholar 

  37. J. Maddox and E. R. Bittner, Phys. Rev. E, in press.

    Google Scholar 

  38. I. Burghardt and L. S. Cederbaum, J. Chem. Phys. 115, 10303, 10312 (2001). 10.

    Article  ADS  Google Scholar 

  39. E. R. Bittner, J. Chem. Phys. 112, 9703 (2000).

    Article  ADS  Google Scholar 

  40. D. Nerukh and J. H. Frederick, Chem. Phys. Lett. 332, 145 (2000).

    Article  ADS  Google Scholar 

  41. E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 113, 9369 (2000).

    Article  ADS  Google Scholar 

  42. E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 116, 8 (2002).

    Article  ADS  Google Scholar 

  43. O. V. Prezhdo and C. Brooksby, Phys. Rev. Lett. 86, 3215 (2001).

    Article  ADS  Google Scholar 

  44. J. C. Burant and J. C. Tully, J. Chem. Phys. 112, 6097 (2000).

    Article  ADS  Google Scholar 

  45. O. F. de Alcantara Bonfim, J. Florencio, and F. C. Sa Barreto, Phys. Rev. E 58, 6851 (1998).

    Article  ADS  Google Scholar 

  46. S. Sengupta and P. K. Chattaraj, Phys. Lett. A 215, 119 (1996).

    Article  ADS  Google Scholar 

  47. H. Frisk, Phys. Lett. A 227, 139 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. R. H. Parmenter and R. W. Valentine, Phys. Lett. A 201, 1 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. H. Carlsen, E. Sjoqvist, and O. Goscinski, Int. J. Quantum Chem. 75, 409 (1999).

    Article  Google Scholar 

  50. H. Carlsen and O. Goscinski, Phys. Rev. A 59, 1063 (1999).

    Article  ADS  Google Scholar 

  51. P. Lancaster and K. Salkauskas, Curve and Surface Fitting (Academic, New York, 1986).

    MATH  Google Scholar 

  52. P. Lancaster and K. Salkauskas, Math. Comp. 37, 141 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  53. T. Belytschko, Y. Y. Lu, and L. Gu, Int. J. Numer. Methods Eng. 37, 229 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  54. B. Nayroles, G. Touzot, and P. Villon, Computational Mechanics 10, 307 (1992).

    Article  ADS  MATH  Google Scholar 

  55. E. Joos in D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu, and H. D. Zeh(eds.), Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, New York, 1998);

    Google Scholar 

  56. H. D. Zeh in P. Blanchard, D. Giulini, E. Joos, C. Kiefer, and I. O. Stanatescu (eds.), Decoherence: Theoretical, Experimental, and Conceptual Problems (Springer, New York, 2000)

    Google Scholar 

  57. M. B. Mensky, Quantum Measurements and Decoherence (Klawer, Dordrecht, 2000).

    Google Scholar 

  58. W. H. Zurek, Physics Today, p. 36, October 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wyatt, R.E. (2002). Recent Applications of the Quantum Trajectory Method. In: Mohan, M. (eds) Current Developments in Atomic, Molecular, and Chemical Physics with Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0115-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0115-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4930-3

  • Online ISBN: 978-1-4615-0115-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics