Skip to main content

Superconductivity Analogies, Ferroelectricity and Flow Defects in Liquid Crystals

  • Conference paper
Recent Progress in Computational and Applied PDES
  • 324 Accesses

Abstract

Liquid crystal phases present a large variety of physical phenomena often leading to interesting applications. Here we address issues involving nematic and smectic phases, from the point of view of modeling and analysis. These include superconductivity analogies of the phase transition from nematic to smectic A*, ferro-electricity of the smectic C* and flow defects in some special regimes. Molecular chirality plays an important role in such behaviors.

This work has been partially supported by a gram from ihe Naiional Science Foundation, contract number DMS-9704714.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Muzumder B. Mukherjee and M.C. Calderer. Poiseuille flow of liquid crystals: highly oscillatory regimes. Journal of Non Newtonian Fluid Mechanics, 99:37–55, 2001.

    Article  MATH  Google Scholar 

  2. G.C. Berry. Rheological properties of nematic solutions of rodlike polymers.Mol. Cryst. Liq. Cryst., 165:333–360, 1988.

    Google Scholar 

  3. M. C. Calderer and C. Liu. Mathematical developments in the study of smectic a liquid crystals. Int. J. Engr. Sci. Mech., 38:1113–1128, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. C. Calderer, C. Liu, and K. Voss. Radial configurations of smectic a materials and focal conics. Physica D, 124:11–22, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. C. Calderer, C. Liu, and K. Voss. Smectic a liquid crystal configurations with interface defects. Mathematical Methods in the Applied Sciences, 52:473–489, 2001.

    Article  MathSciNet  Google Scholar 

  6. M. C. Calderer and P. Palffy-Muhoray. Ericksen’s mar and modeling of the smectic a-nematic phase transition. SIAM J. Appl. Math., 60:1073–1098, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.C. Calderer and C. Liu. Liquid crystal flow: Dynamic and static configurations. SIAM Journal of Applied Mathematics, 60:1925–1949, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.C. Calderer and B. Mukherjee. Chevron patterns in liquid crystal flows. Physica D, 98:201–224, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.C. Calderer and B. Mukherjee. On poiseuille flow of liquid crystals. Liquid Crystals, 22:121–135, 1997.

    Article  Google Scholar 

  10. M.C. Calderer and A. Panchencko. Young measures and order-disorder transition in steady flow of liquid crystals. SIAM Jour. Appl. Math. (submitted), 2001.

    Google Scholar 

  11. N. A. Clark and S. T. Lagerwall. Submicrosecond bistable electro-optic switching in liquid crystals. Applied Physics Letters, 36:899–901, 1980.

    Article  Google Scholar 

  12. P. G. de Gennes and J. Prost. The Physics of Liquid Crystals. Oxford University Press, Oxford, 1993.

    Google Scholar 

  13. P. G. de Gennes and J. Prost. The Physics of Liquid Crystals. Oxford University Press, Oxford, 1993.

    Google Scholar 

  14. P.G. de Gennes. An analogy between superconductivity and smectics a. Solid State Commun., 58(10):753–756, 1972.

    Article  Google Scholar 

  15. J.L. Ericksen. Liquid crystals with variable degree of orientation. Arch. Rational Mech. Anal., 113:97–120, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Fraden and R.D. Kamien. Self-assembly in vivo. Biophysical Journal, 78:2189–2190, 2000.

    Article  Google Scholar 

  17. PL. Maffettone G. Marrucci. Description of the liquid crystalline phase of rodlike polymers at high shear rates. American Chemical Society, 22:4076–4082, 1989.

    Google Scholar 

  18. P. Palffy-Muhoray J.T. Gleeson and W. Van Saarloos. Propagation of excitations induced by shear flow in nematic liquid crystals. Physical Review A, 44:2588–2595, 1991.

    Article  Google Scholar 

  19. R.G. Larson and D.W. Mead. Development of orientation and texture during shearing of liquid-crystalline polymers. Liquid Crystals, 12:751–768, 1992.

    Article  Google Scholar 

  20. F.-H. Lin and C. Liu. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math., 48:501–537, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. H. Lin and C. Liu. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm.Pur.Appl.Math., 48:501–537, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  22. F.-H. Lin and C. Liu. Partial regularity of the nonlinear dissipative systems modeling the flow of liquid crystals. Discrete Contin. Dynam. Systems, 2(1): 1–22, 1996.

    MathSciNet  MATH  Google Scholar 

  23. F.-H. Lin and C. Liu. Existence of solution for erickse-leslie system. Arch. Rat. Mech. Anal., 154(2): 135–156, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  24. M.C. Calderer. Dissipation, surface energy and defects. European Journal on Applied Mathematics, 8:301–310, 1997.

    MathSciNet  MATH  Google Scholar 

  25. R.B. Meyer. The flexoelectric effect in nematic liquid crystals. Phys. Rev. Lett., 22:918– 922, 1969.

    Article  Google Scholar 

  26. C. Liu P. Bauman, M. C. Calderer and D. Phillips. The phase transition between chiral nematic and smectic a* liquid crystals. Arch. Rat. Mech. Anal.(submitted), 2002.

    Google Scholar 

  27. S.R. Renn and T.C. Lubensky. Abrikosov dislocation lattice in a model of the cholesteric to smectic-a transition. Phys. Rev. A, 38:2132–2147, 1988.

    Article  Google Scholar 

  28. J. Wahl and F. Fisher. Elastic and viscosity constants of nematic liquid crystals from a new optical method. Molecular Crystals and Liquid Crystals, 22:359–373, 1973.

    Article  Google Scholar 

  29. K.F. Wissbrun. Rheology of rod-like polymers in the liquid crystalline state. Journal of Rheology, 25:619–662, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Calderer, M.C. (2002). Superconductivity Analogies, Ferroelectricity and Flow Defects in Liquid Crystals. In: Chan, T.F., Huang, Y., Tang, T., Xu, J., Ying, LA. (eds) Recent Progress in Computational and Applied PDES. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0113-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0113-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4929-7

  • Online ISBN: 978-1-4615-0113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics