Skip to main content

Modeling and Simulations for Electrochemical Power Systems

  • Conference paper

Abstract

In this paper, we will discuss mathematical models and numerical simulations for electrochemical power systems such as lithium-ion battery. We will address the issue of well-posedness of the underlying system of nonlinear partial differential equations, and introduce numerical methods for battery simulations based on Newton linearization, Krylov subspace iteration and multigrid preconditioning. Finally, we will give a brief introduction to fuel cell modeling and simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Adams, Sobolev space, New York, Academic press, 1975.

    Google Scholar 

  2. P.N. Brown, A.C. Hindmarsh and L.R. Petzold,Using Krylov Method in the Solution of Large-scale Differential-algebraic Systems, SIAM J. Sci. Comput. 15 (1994), 1467–1488.

    MathSciNet  MATH  Google Scholar 

  3. Y. Chen and J.W. Evans, Thermal analysis of lithium-ion batteries, J.Electrochem.Soc, 143,2708( 1996).

    Article  Google Scholar 

  4. M. Doyle, J. Newman, A.S. Gozdz, C.N. Schmutz, and J.-M. Tarascon, Comparison of modeling predictions with experimental data from plastic lithium ion cells, J.Electrochem. Soc., 143,1890(1996).

    Article  Google Scholar 

  5. A. Friedman, Mathematics in Industrial Problems, Part 7, 229–240(1995).

    Google Scholar 

  6. T.F. Fuller, M. Doyle and J. Newman, Simulation and optimization of the dual lithium ion insertion cell, J.Electrochem. Soc., 141,1(1994).

    Article  Google Scholar 

  7. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential equations of Second Order, Springer-Verlag, Heidelberg, New York, 1977.

    MATH  Google Scholar 

  8. A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers in Applied Mathematics Vol. 17, SIAM, Philadelphia, 1997.

    Google Scholar 

  9. W.B. Gu and C. Y. Wang, Thermal and Electrochemical Coupled Modeling of a Lithium-Ion Cell, R.A. Marsh, Z. Oguma, J. Prakash, and S. Surampudi, Editors, The Electrochemical Society Series, PV 99–29, 748 (1999).

    Google Scholar 

  10. W.B. Gu, C.Y. Wang, S.M. Li, M.M. Geng and B.Y. Liaw, Modeling discharge and charge characteristics of Nickel-Metal hydride batteries, Electrochimica Acta, Vol.44, pp.4525– 4541 (1999).

    Article  Google Scholar 

  11. W.B. Gu, C.Y. Wang, John Weidner and R. Jungst, Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow, Journal of Electrochemical Society, Vol.147, pp427–434 (2000).

    Article  Google Scholar 

  12. W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer-verlag, Berlin, New York, 1994.

    Book  MATH  Google Scholar 

  13. W. Hackbusch, Multigrid Methods and Application, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  14. J.-S. Hong, H. Maleki, S. Al Hallaj, L. Redey and J.R. Selman, Electrochemical-Calorimetric studies of lithium-ion cells, J. Eletrochem. Soc., 145, 1489(1998).

    Article  Google Scholar 

  15. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’tzeva, Linear and quasilinear equations of parabolic type, Trans;. Math. Mono., AMS, Vol. 23(1968).

    Google Scholar 

  16. O.A. Ladyzenskaya and N.N. Ural’tseva, Linear and quasilinear elliptic equations, English Transl., Academic Press, New York, 1968.

    Google Scholar 

  17. John S. Newman, Electrochemical Systems, Second Edition, 1991.

    Google Scholar 

  18. M.M. Mench, C.Y. Wang, and S. Thynell, An Introduction to Fuel Cells and Related Transport Phenomena, Accepted for publication in Journal of Transport Phenomena 2001.

    Google Scholar 

  19. J. Moser, A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13(1960), pp.457–468.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17(1964), pp.101–134.

    Article  MathSciNet  MATH  Google Scholar 

  21. L.R. Petzold, A description of DASSL: A differential/algebraic system solver, eds. R.S. stepleman et al., North-Holland, Amsterdam(1983), 65–68.

    Google Scholar 

  22. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetrical linear systems, SIAM J. Sci. Stat. Comput.,7(1986),865–869.

    Article  MathSciNet  Google Scholar 

  23. L.H. Thomas, Elliptic problems in linear difference equations over a network, Watson Sci. Comput. Lab. Report, Columbia University, New York, 1949.

    Google Scholar 

  24. C.Y. Wang, W.B. Gu and B.Y. Liaw, Micro-macroscopic coupled modeling of batteries and fuel cells I. Model development, J.Eletrochem. Soc., 145, 3407(1998).

    Article  Google Scholar 

  25. Z.H. Wang, C.Y. Wang and K.S. Chen, Two phase flow and transport in the air cathode of proton exchange membrane fuel cells, J. Power Sources, Vol. 94 (1), pp. 40–50(2001).

    Article  Google Scholar 

  26. J. Wu, Verkat Srinivasan, J. Xu and C.Y. Wang, Newton-Krylov-Multigrid algorithms for battery simuation. to be appear in J. Electrochem. Soc.

    Google Scholar 

  27. S. Um, C. Y. Wang and K. S. Chen, Computational fluid dynamics modeling of proton exchange membrane fuel cells, Journal of Electrochemical Society, Vol.147, pp4485– 4493(2000).

    Article  Google Scholar 

  28. S. Um and C. Y. Wang, Three dimensional analysis of transport and reaction in proton exchange membrane fuel cells, in Proc. of the ASME Heat Transfer Division, Orlando, FL., Nov. 2000.

    Google Scholar 

  29. J. Xu, An Introduction to Multilevel Methods, Wavelets, multilevel methods and elliptic PDEs (Leicester, 1996), Oxford Univ. Press, New York, 1997, 213–302.

    Google Scholar 

  30. D. M. Young, Iterative Solution of Large Linear System, Academic Press, New York, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Wu, J., Xu, J. (2002). Modeling and Simulations for Electrochemical Power Systems. In: Chan, T.F., Huang, Y., Tang, T., Xu, J., Ying, LA. (eds) Recent Progress in Computational and Applied PDES. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0113-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0113-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4929-7

  • Online ISBN: 978-1-4615-0113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics