Skip to main content

Numerical L Methods for Schrödinger Equations

  • Conference paper
Recent Progress in Computational and Applied PDES

Abstract

In this note we review the time-splitting spectral method, recently studied by the authors, for linear[2] and nonlinear[3] Schrödinger equations (NLS) in the semiclassical regimes, where the Planck constant ɛ is small. The time-splitting spectral method under study is unconditionally stable and conserves the position density. Moreover it is gauge invariant and time reversible when the corresponding Schrödinger equation is. Numerical tests are presented for linear, for weak/strong focusing/defocusing nonlinearities, for the Gross-Pitaevskii equation and for current-relaxed quantum hydrodynamics. The tests are geared towards understanding admissible meshing strategies for obtaining ‘correct’ physical observables in the semi-classical regimes. Furthermore, comparisons between the solutions of the nonlinear Schrödinger equation and its hydrodynamic semiclassical limit are presented.

This research was supported by the International Erwin Schrödingcr Institute in Vienna. W.B. acknowledges support in part by the National University of Singapore gram No. R-151 -000-016-112. S.J. acknowledges support in pan by NSF grant No. DMS-0I96I06. P.A.M. acknowledges support from the EU-funded TMR network ‘Asymptotic Methods in kinetic Theory’ and from his WITTGENSTEIN-AWARD 2000. funded by the Austrian National Science Fund FWF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, W. (2001). Time-splitting Chebyshev-spectral approximations for (non)linear Schrödinger equation, preprint.

    Google Scholar 

  2. Bao, W., Jin, Shi, and Markowich, P.A. (2001). On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., to appear.

    Google Scholar 

  3. Bao, W., Jin, Shi, and Markowich, P.A. (2001). Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes, SIAM J. Sci. Comput., submitted.

    Google Scholar 

  4. Bronski, J.C., and McLaughlin, D.W., (1994). Semiclassical behavior in the NLS equation: optical shocks -focusing instabilities, Singular Limits of Dispersive Waves, Plenum Press, New York and London.

    Google Scholar 

  5. Ceniceros, H.D., and Tian, F.R. A numerical study of the semi-classical limit of the focusing nonlinear Schrödinger equation, Phys. Lett. A., to appear.

    Google Scholar 

  6. Gardiner, S.A., Jaksch, D., Dum, R., Cirac, J.I., and Zollar, P. (2000). Nonlinear matter wave dynamics with a chaotic potential, Phys. Rev. A, 62, pp. 023612–1:21.

    Article  Google Scholar 

  7. Gasser, I., and Markowich, P. A., (1991).Quantum hydrodynamics, Wigner transforms and the classical limit, Asymptotic Analysis 14, pp. 97–116.

    MathSciNet  Google Scholar 

  8. Gerard, P., (1991). it Microlocal defect measures, Comm. PDE. 16, pp. 1761–1794.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerard, P., Markowich, P.A., Mauser, N.J., and Poupaud, F., (1997). Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. 50, pp. 321–377.

    Article  MathSciNet  Google Scholar 

  10. Gottlieb, D., and Orszag, S.A., (1977). Numerical Analysis of Spectral Methods, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  11. Grenier, E. (1998). Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc, 126, pp. 523–530.

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, Shan, Levermore, CD., and McLaughlin, D.W., (1999). The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math. LII, pp. 613–654.

    Article  MathSciNet  Google Scholar 

  13. Jin, Shan, Levermore, C.D., and McLaughlin, D.W., (1994). The behavior of solutions of the NLS equation in the semiclassical limit, Singular Limits of Dispersive Waves, Plenum Press, New York and London.

    Google Scholar 

  14. Jüngel, A. (2001). Quasi-hydrodynamic semiconductor equations, Progress in Nonlinear Differential Equations and Its Applications, Birkhäuser, Basel.

    Google Scholar 

  15. Krasny, R. (1986). A study of singularity formulation in a vortex sheet by the point-vortex approximation, J. Fluid Mech., 167, pp. 65–93.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, C.K., and Li, H. (2001). Semiclassical limit and well-posedness of Schödinger-Poisson and quantum hydrodynamics, preprint.

    Google Scholar 

  17. Laudau, and Lifschitz (1977). Quantum Mechanics: non-relativistic theory, Pergamon Press, New York.

    Google Scholar 

  18. Markowich, P.A., Mauser, N.J., and Poupaud, F., (1994). A Wigner function approach to semiclassical limits: electrons in a periodic potential, J. Math. Phys. 35, pp. 1066–1094.

    Article  MathSciNet  MATH  Google Scholar 

  19. Markowich, P.A., Pietra, P., and Pohl, C., (1999). Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit, Numer. Math. 81, pp. 595–630.

    Article  MathSciNet  MATH  Google Scholar 

  20. Markowich, P.A., Pietra, P., Pohl, C., and Stimming, H.P., (2000). A Wigner-Measure Analysis of the Dufort-Frankel scheme for the Schrödinger equation, preprint.

    Google Scholar 

  21. Miller, P.D., Kamvissis, S., (1998). On the semiclassical limit of the focusing nonlinear Schrödinger equation, Phys. Letters A, 247, pp. 75–86.

    Article  MathSciNet  MATH  Google Scholar 

  22. Tartar, L., (1990). H-measures: a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115, pp. 193–230.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Bao, W., Jin, S., Markowich, P.A. (2002). Numerical L Methods for Schrödinger Equations. In: Chan, T.F., Huang, Y., Tang, T., Xu, J., Ying, LA. (eds) Recent Progress in Computational and Applied PDES. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0113-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0113-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4929-7

  • Online ISBN: 978-1-4615-0113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics