Skip to main content

An Optimal Error Estimate for an H-P Clouds Galerkin Method

  • Conference paper
Recent Progress in Computational and Applied PDES

Abstract

In this paper, we investigate the consistency and the approximation properties of h-p clouds methods. For this purpose, a special partition of unity function space in which inverse inequalities can be established is constructed. The optimal error estimate for the h-p clouds Galerkin methods is then established. The convergence rates are measured by the radius of influence domains of weight functions instead of the mesh size as usually used in the finite element analysis.

Subsidized by the Special Fund for Major State Basic Research Projects and State Educational Ministry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška. I and J. M. Melenk, The partition of unity finite element method, Int. J. Num. Meth. Eng. 40(1997), pp. 727–758.

    Article  Google Scholar 

  2. Belytschko, T., Y. Y. Lu and L. Gu. Element-free Galerkin methods, Int. J. Numer . Meth. Engr 37 (1994), pp. 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Belytsho, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: An overview and recent developments.

    Google Scholar 

  4. S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods . Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  5. Chen J. S. and Wang H. P, New boundary condition treatments in meshfree computation problems, Comp. Meth. Appl. Nech. Engr, 187 2000.

    Google Scholar 

  6. Chen, J. S., Wu, C. T., Yoon, S., and You, Y, “A Stabilized Conforming Nodal Integration for Galerkin Meshfree Methods,” International Journal for Numerical Methods in Engineering, 50 (2001), pp. 435–466.

    Article  MATH  Google Scholar 

  7. Duarte, C. A. and J. T. Oden. H-p clouds-an h-p meshless method. Numer . Meth. Part. Diff. Equat, (1996), pp. 1–34.

    Google Scholar 

  8. J. Gosz and W. K. Liu, Admissible approximations for essential boundary conditions in the reproducing kernel method, Comp. Mech 19 (1996), pp. 120–135.

    Article  MATH  Google Scholar 

  9. M. Griebel and M. A. Schweitzer. A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic pdes.

    Google Scholar 

  10. W. Han and X. Meng. Error analysis of the Reproducing Kernel Particle Method, Computer Methods in Applied Mechanics and Engineering, 190 (2001), pp. 6157–6181.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Han, G. J. Wagner and W. K. Liu, Convergence analysis of a hierarchical enrichment of Dirichlet boundary conditions in a meshfree method, to appear.

    Google Scholar 

  12. Hu Jun. Analysis for a kind of h-p clouds Galerkin method and lower approximation of eigenvalues. MSc. Dissertationion, Xiangtan University, 2001.

    Google Scholar 

  13. Hu Jun and Huang Yun Qing. Analysis for a kind of meshless Galerkin Method, The Fourth International Conference on Engineering and Computation, 2001, Beijing, China.

    Google Scholar 

  14. W. K. Liu, S. Jun, and Y. F. Zhang. Reproducing kernel particle methods. Int. J. Numer . Meth. Engr, 20 (1995), pp. 1081–1106.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. K. Liu, S. Li, and T. Betytscho. Moving least-square reproducing kernel methods. part I: methodology and convergence, Computer Methods in Applied Mechanics and Engineering 143(1997), pp. 113–154.

    Article  MathSciNet  MATH  Google Scholar 

  16. Krongauz Y., Belytschko T., Enforcement of Essential Boundary Conditions in Meshless Approximations Using Finite Elements, Computer Methods in Applied Mechanics and Engng, 131 (1996), pp. 133–145.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Krysl and T.Belytschko. Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions. Comp. Meth. Appl. Mech. Engr. 148 (1996), pp. 257– 277

    Article  MathSciNet  Google Scholar 

  18. B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method: diffuse approximation and diffuse elements. Comp. Mech. 10 (1992), pp. 307–318.

    Article  MATH  Google Scholar 

  19. G. J. Wagner and W. K. Liu. Hierarchical enrichment for bridging scales and mesh-free boundary conditions. Int. J. Numer. Meth. Engr 50 (2001), pp. 507–524.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Hu, J., Huang, Y., Xue, W. (2002). An Optimal Error Estimate for an H-P Clouds Galerkin Method. In: Chan, T.F., Huang, Y., Tang, T., Xu, J., Ying, LA. (eds) Recent Progress in Computational and Applied PDES. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0113-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0113-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4929-7

  • Online ISBN: 978-1-4615-0113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics