Skip to main content

Attentional Pyramidal Neural Mechanisms

  • Chapter
Book cover Visual Attention Mechanisms
  • 220 Accesses

Abstract

While some models for visual attention represent computational models of human attention and are directly based on biological evidence24,11,10,31,1, other systems focus more on the computational aspects of the simulation and have been recognized as important components for tackling practical problems and for analyzing real images (e.g. 35,19,36). These attentional systems, thanks also to the increasing interest in neural networks research, have been largely implemented by Artificial Neural Networks (ANNs). There are some practical considerations that encourage to use ANNs, most of which are related to their speed and flexibility. Commonly used Artificial Neural Networks have been widely demonstrated to be tolerant to noise, some scaling rotation and translation factors. They involve phases to dynamically adapt the network to the environment (plasticity). ANNs are also characterized by the intrinsic capability of processing simultaneously different sources of information such as edges and regions, so as to overcome the difficult problem of integrating the results produced by different algorithms, each one working on a different kind of information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ahmad, “VISIT: an efficient computational model of human visual attention”, Ph.D. Thesis, University of Illinois at Urbana Champaign, and Technical Report TR-91-049, ICSI, Berkely CA, 1991.

    Google Scholar 

  2. R. Bajcsy, D.A. Rosenthal, “Visual and conceptual focus of attention”, Structured Computer Vision, S. Tanimoto and A. Klinger eds., Academic Press, pp. 133–149, 1980.

    Google Scholar 

  3. F. Bergholm, “Edge focusing”,IEEE Transactions on PAMI, vol. 9, no. 6, pp. 726–741, 1987.

    Article  Google Scholar 

  4. R.J. Watt, “Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus”, Journal of Optical Society of America, vol. 4, no. 10, pp. 2006–2021, 1987.

    Article  Google Scholar 

  5. P. J. Burt, E. H. Adelson, “The Laplacian Pyramid as a Compact Image Code”, IEEE Trans. on Comm., Vol. COM-31, n. 4, pp. 532–540, 1983.

    Article  Google Scholar 

  6. P. J. Burt, C. H. Anderson, J. O. Sinninger, G. van der Wal, “A Pipeline Pyramid Machine”, Pyramidal Systems for Computer Vision, V. Cantoni and S. Levialdi eds., pp. 133–152, Springer-Verlag, Berlin, 1986.

    Chapter  Google Scholar 

  7. V. Cantoni, S. Levialdi, “Pyramidal Systems for Computer Vision”, Springer-Verlag, 1987.

    Google Scholar 

  8. V. Cantoni, M. Ferretti, “Pyramidal Architectures for Computer Vision”, Plenum Press, New York, 1994.

    Book  MATH  Google Scholar 

  9. V. Cantoni, A. Petrosino, “Neural Recognition in a Pyramidal Structure”, IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 472–480, March 2002.

    Article  Google Scholar 

  10. K.R. Cave, J.M. Wolfe, “Modeling the role of parallel processing in visual search”, Cognitive Psychology, vol. 22, pp. 225–271, 1990.

    Article  Google Scholar 

  11. D. Chapman, “Vision, instruction and action”, Ph.D. Thesis, AI Laboratory, MIT, Technical Report AI-TR-1204, April 1990.

    Google Scholar 

  12. C. R. Dyer, “Multiscale Image Understanding”, in Parallel Computer Vision, L. Uhr ed., Academic Press, 1987.

    Google Scholar 

  13. O. K. Ersoy, D. Hong, “Parallel, self-organizing, hierarchical neural networks”,IEEE Trans, on Neural Networks, 1, pp. 167–178, 1990.

    Article  Google Scholar 

  14. K. Fukushima, “Neocognitron: a hierarchical neural network capable of visual pattern recognition”, Neural Networks, 1, pp. 119–130, 1998.

    Article  Google Scholar 

  15. S. Geman, E. Bienenstock, R. Dourstat, “Neural networks and the bias/variance dilemma”,Neural Computation, 4, 1, pp. 1–58, 1992.

    Article  Google Scholar 

  16. M. Gori, A. Tesi, “On the problem of local minima in backpropagation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, n. 1, pp. 76–86, 1992.

    Article  Google Scholar 

  17. M. Bianchini, M. Gori, “ Optimal Learning in artificial neural networks: a review of theoretical results”, Neurocomputing, vol. 13, no. 5, pp. 313–346, October 1996.

    Article  Google Scholar 

  18. M. Gori, F. Scarselli, “ Are multilayer networks adequate for pattern recognition and verification?”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1121–1132, 1998.

    Article  Google Scholar 

  19. G.-J. Giefing, H. Janssen, H. Mallot, “Saccadic object recognition with an active vision system”, Proc. of Internat. Conf. on Pattern Recognition, pp. 664–667, 1992.

    Google Scholar 

  20. R. C. Gonzalez and P. Wintz, “Digital Image Processing”, Addison-Wesley,1987.

    Google Scholar 

  21. S. Haykin, “Neural Networks: a Comprehensive Foundation”, Macmillan/IEEE Press, 1994.

    MATH  Google Scholar 

  22. V. Honavar, L. Uhr, “Brain-structured Connectionist Networks that Perceive and Learn”, Connection Science, Vol. 1, N. 2, pp. 139–159, 1989.

    Article  Google Scholar 

  23. R. Hummel, “The Scale-space Formulation of Pyramid Data Structures”, inParallel Computer Vision, L. Uhr ed., Academic Press, 1987.

    Google Scholar 

  24. C. Koch, S. Ullman, “Shifts in selective visual attention: towards the underlying neural circuitry”, Matters of Intelligence, L.M. Vaina ed., pp. 115-141, Reidel Publishing, 1987.

    Google Scholar 

  25. D. R. Lovell, T. Downs, A.-C. Tsoi, “Evaluation of the Neocognitron”, IEEE Transactions on Neural Networks, vol. 8, n. 5, pp. 1098–1105, 1997.

    Google Scholar 

  26. D. Marr, E. C. Hildreth, “Theory of edge detection”, Proc. R. Soc. London, vol. B-207, pp. 187–217, 1980.

    Article  Google Scholar 

  27. M. R. J. McQuoid, “Neural Ensembles: Simultaneous Recognition of Multiple 2-D Visual Objects”, Neural Networks, Vol. 6, pp. 907–917, 1993.

    Article  Google Scholar 

  28. Y. le Cun, “Generalization and network design strategies”, in Connectionism in Perspective, R. Pfeifer et al. ed.s, pp. 143–155, Elsevier, Amsterdam, 1989.

    Google Scholar 

  29. Y. le Cun, Y. Bengio, “Convolutional networks for images, speech, and times series”, in The Handbook of Brain Science and Neural Networks, M. Arbib ed., Cambridge, MA: MIT Press, pp. 225–258, 1995.

    Google Scholar 

  30. C. Neubauer, “Evaluation of convolutional neural networks for visual recognition”, IEEE Transactions on Neural Networks, vol. 9, n. 4, pp. 685–696, 1998.

    Article  Google Scholar 

  31. B. Olshausen, C. Anderson, D. van Essen, “A neural model of visual attention and invariant pattern recognition” , Caltech, Computational and Neural System Program, CNC Memo 18, August 1992.

    Google Scholar 

  32. S. J. Perantonis, P. J. G. Lisboa, “Translation, rotation and scale invariant pattern recognition by high-order neural networks and moment classifiers”, IEEE Transactions on Neural Networks, 3, 2, pp. 241–251, 1992.

    Article  Google Scholar 

  33. A. Rosenfeld, “Multiresolution Image Processing and Analysis”, Springer-Verlag, 1984.

    Book  MATH  Google Scholar 

  34. D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning Internal Representations by Error Propagation”,Parallel Distribuited Processing: Exploration in the the Microstructure of Cognition, cap. 8, 1986.

    Google Scholar 

  35. P.A. Sandon, “Simulating visual attention”, Journal of Cognitive Neuroscience, vol. 2, no. 3, pp. 213–231, 1990.

    Article  MathSciNet  Google Scholar 

  36. A. Shashua, S. Ullman, “Structured saliency: the detection of globally salient structures using a locally connected network”, Proc. of the International Conference on Computer Vision, pp. 321–327, 1988.

    Google Scholar 

  37. L. Uhr, “Layered Recognition Cone Networks that Preprocess, Classify and Describe”, IEEE Transactions on Computer, vol. 21, pp. 758–768, 1972.

    Article  MATH  Google Scholar 

  38. L. Uhr, “Pyramid Multi-Computer Structures and Augmented Pyramids”, in Computing Structures for Image Processing, M. Duffed., Academic Press, 1983.

    Google Scholar 

  39. S. G. Ziavras, M. A. Siddiqui, “Pyramid Mappings onto Hypercubes for computer Vision: Connection Machine Comparative Study”, Concurrency: Practice and Experience, Vol. 5(6), pp. 471–489, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petrosino, A. (2002). Attentional Pyramidal Neural Mechanisms. In: Cantoni, V., Marinaro, M., Petrosino, A. (eds) Visual Attention Mechanisms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0111-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0111-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4928-0

  • Online ISBN: 978-1-4615-0111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics