Skip to main content

Multiresolution and Associative Representation of Objects

  • Chapter
Visual Attention Mechanisms
  • 220 Accesses

Abstract

Object representation is a fundamental issue in computer vision. While an image is, after capture an unstructured array of individual pixels, the vision process will try to give significance to this set. This requires to extract information from the pixels, and, in most situations where the image represents a real world scene, to group neighboring pixels into higher level features (contour, regions) according to some criterions. If the segmentation process was efficient enough, these connected regions will more or less closely correspond to objects, or parts of objects of the scene, and it will be possible to apply some recognition methods to match them against some object models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henk J. A. M. Heijmans. Connected morphological operators for binary images. Computer Vision and Image Understanding: CVIU, 73(1):99–120, 1999. URL citeseer.nj.nee.com/14301.html.

    Article  MATH  Google Scholar 

  2. D. H. Hubel. Eye, brain and the computer. Scientific american books, New-York, 1998.

    Google Scholar 

  3. D. Marr. Vision: A Computational Investigation into the Human Processing and Representation of Information. W. H. Freeman and Co., San Francisco, 1982.

    Google Scholar 

  4. L. Uhr. Layered ‘recognition cones’ networks that preprocess, classify, and describe. IEEE Trans. Computers, C-21(7):758–768, 1972.

    Article  Google Scholar 

  5. V. Cantoni and M. Ferretti. Pyramidal architectures for computer vision. Advances in computer vision and machine intelligence. Plenum Press, 1994.

    Book  MATH  Google Scholar 

  6. A. Mérigot, P. Clermont, J. Méhat, F. Devos, and B. Zavidovique. A pyramidal system for image processing. In Virginio Cantoni and Stefano Levialdi, editors, Pyramidal Systems for Image Processing and Computer Vision, NATO ASI Series, pages 109–124. Springer Verlag, 1986.

    Chapter  Google Scholar 

  7. V. Cantoni and S. Levialdi. PAPIA: a case history. In L. Uhr, editor, Parallel Computer Vision, pages 3–13. Academic Press, 1987.

    Google Scholar 

  8. A. L. Yuile and T. A. Poggio. Scaling theorems for zero crossings. IEEE Trans. Pattern Anal. Machine Intell., PAMI-8(2): 15–25, 1986.

    Article  Google Scholar 

  9. P. J. Burt and E. H. Anderson. The Laplacian pyramid as a compact image code. IEEE Trans. Comm., COM-31:532–540, april 1983.

    Article  Google Scholar 

  10. D. Marr and E. C. Hildreth. Theory of edge detection. Proc. Roy. Soc. London, B-207:187–217, 1980.

    Google Scholar 

  11. I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math, XLL:909–996, 1988.

    Article  MathSciNet  Google Scholar 

  12. S. Mallat. A theory for multidimensional signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell., PAMI-11:674–693, june 1989.

    Article  Google Scholar 

  13. H. Samet. The quadtree and related hierachical data structures. Computing surveys, 16(2):187–260, 984.

    Article  MathSciNet  Google Scholar 

  14. E. G. Hoel and H. Samet. Data-parallel primitives for spatial operations using PM quadtrees. In Cantoni et al.36, pages 266–273.

    Google Scholar 

  15. P. Meer. Stochastic image pyramids. CVGIP, 45:269–294, 1989.

    Google Scholar 

  16. J. M. Jolion and A. Montanvert. The adaptative pyramid: a framework for 2D image analysis. CVGIP, 55(3) :339–348, 1992.

    Article  MATH  Google Scholar 

  17. A. Rosenfeld, editor.Multiresolution image processing and analysis. Springer Verlag, 1984.

    MATH  Google Scholar 

  18. C. R. Dyer. Multiscale image understanding. In L. Uhr, editor, Parallel Computer Vision, pages 171–213. Academic Press, New York, 1987.

    Google Scholar 

  19. Jean-Michel Jolion and Azriel Rosenfeld. A Pyramid Framework for Early Vision. Kluwer, 1994.

    Book  Google Scholar 

  20. W. Hackbusch. Multigrid methods and applications. Springer-Verlag, 1985.

    Google Scholar 

  21. D. Terzopoulos. Multilevel computational processes for visual surface reconstruction. CVGIP, 24:52–96, 1983.

    Google Scholar 

  22. D. Terzopoulos. Image analysis using multigrid relaxation techniques. IEEE Trans. Pattern. Anal. and Mach. Intell.,PAMI-8(2): 129–139, 1986.

    Article  Google Scholar 

  23. F. Glazer. Multilevel relaxation in low-level image processing. In Rosenfeld17, pages 312–330.

    Google Scholar 

  24. S. Tanimoto. Template matching in pyramids. CVGIP, 16:356–369, 1981.

    Google Scholar 

  25. J. M. Jolion and A. Rosenfeld. An o(log n) pyramid hough transform. Pattern Recognit Lett., 9:343–349, 1989.

    Article  MATH  Google Scholar 

  26. G. Bongiovanni, C. Guerra, and S. Levialdi. Computing the hough transform on a pyramid architecture.Machine Vision Appl., 3(2):57–77, 1990.

    Article  Google Scholar 

  27. P. J. Burt, T. H. Hong, and A. Rosenfeld. Segmentation and estimation of image region properties through cooperative hierarchical computation. IEEE Trans. on Systems, Man and Cybernetics, 11(12), December 1981.

    Google Scholar 

  28. T. Hong and A. Rosenfeld. Compact region extraction using wieghted pixel linking in a pyramid. IEEE Trans. Patter Anal. and Mach. Intell., PAMI-6(2):222–229, 1984.

    Article  Google Scholar 

  29. M. Spann. Figure/ground separatio n nusing stochastic pyramid linking. Pattern Recognition, 24(10):993–1002, 1991.

    Article  Google Scholar 

  30. N. Sicard, B. Ducourthial, and A. Mérigot. Parallel image analysis with anet, a graph-based programming environment. In C. Guerra, editor, Computer architecture for machine perception, Padova, Italy, September 2000. IEEE.

    Google Scholar 

  31. D. Dulac, S. Mohammadi, and A. Mérigot. Implementation and evaluation of a parallel architecture using asynchronous communications. In Cantoni et al.36, pages 106–111.

    Google Scholar 

  32. B. Ducourthial.Les réseaux associatifs : un modèle de programmation à parallélisme de données, pour algorithmes et données irréguliers, à primitives de calcul asynchrones. These de doctorat, Université Paris sud, jan. 1999.

    Google Scholar 

  33. Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, Cambridge, MA, USA, 1990.

    Google Scholar 

  34. Alain Mérigot. Associative nets: A graph-based parallel computing model. IEEE Transactions on Computers46(5):558–571, 1997.

    Article  Google Scholar 

  35. B. Ducourthial and A. Mérigot. Graph embedding in the associative mesh model. Technical Report 96-002, Institut d’Electronique Fondamentale, Bât. 220. Université Paris Sud, 91405 Orsay, France, 1996.

    Google Scholar 

  36. V. Cantoni, L. Lombardi, M. Mosconi, M. Savini, and A. Setti, editors. Pavia, Italia, September 1995. IEEE Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mérigot, A. (2002). Multiresolution and Associative Representation of Objects. In: Cantoni, V., Marinaro, M., Petrosino, A. (eds) Visual Attention Mechanisms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0111-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0111-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4928-0

  • Online ISBN: 978-1-4615-0111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics