Spatial Coherences of Seismic Data and the Application to Characterization of Stochastic Heterogeneities

  • Ru-Shan Wu

Abstract

After passing through the interior of the Earth, seismic waves carry information about medium heterogeneities to the surface. The data observed on the surface, such as the travel time and amplitude fluctuations, reflected waves, etc., can be back-mapped to the subsurface by inversion methods to obtain characteristic descriptions of the mediums heterogeneities. With good data coverage, seismic tomography, which is a deterministic method, can in principal invert the observed wavefield on the surface to obtain the 3-D velocity distribution of the subsurface medium. However, when the medium has multiple-scale, complex heterogeneities, deterministic methods often fail to give a complete characterization of the heterogeneities. Commonly, broadband heterogeneities are dealt with by smoothing both the observed wavefield and the heterogeneity model of inversion. In this way the information of small-scale heterogeneities is lost in the process and therefore the obtained image can only recover the slowly varying, large-scale heterogeneities.

Keywords

Attenuation Covariance Coherence Turbidity Lithology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., 1973, Scattering of P waves under the Montana LASA, J. Geophys. Res. 78:1334–1346.CrossRefGoogle Scholar
  2. Aki, K., and Richards, P. G., 1980, Quantitative Seismology, Freeman, San Francisco.Google Scholar
  3. Berteussen, K. A., 1975, Crustal structure and P-wave travel time anomalies at NORSAR, J. Geophys. 41:71–84.Google Scholar
  4. Berteussen, K. A., Christoffersson, A., Husebye, E. S., and Dahle, A., 1975, Wave scattering theory in analysis of P wave anomalies at NORSAR and LASA, Geophys. J. R. Astr. Soc. 42:402–417.Google Scholar
  5. Berteussen, K. A., Husebye, E. S., Mereu, R. F., and Ram, A., 1977, Quantitative assessment of the crust-upper mantle heterogeneities beneath the Gauribidanur seismic array in Southern India, Earth and Planet. Sci. Lett. 37:326–332.CrossRefGoogle Scholar
  6. Capon, J., 1974, Characterization of crust and upper mantle structure under LASA as a random medium, Bull. Seismol. Soc. Am. 64:235–266.Google Scholar
  7. Capon, J., and Berteussen, K. A., 1974, A random medium analysis of crust and upper mantle structure under NORSAR, Geophys. Res. Lett. 1:327–328.CrossRefGoogle Scholar
  8. Chen, X. F., and Aki, K., 1991, General coherence functions for amplitude and phase fluctuations in a randomly heterogeneous medium, Geophys. J. Int. 105:155–162.CrossRefGoogle Scholar
  9. Chernov, L. A., 1960, Wave Propagation in a Random Medium, McGraw-Hill, New York.Google Scholar
  10. Fehler, M., Sato, H. and Huang, L. J., 2000, Envelope broadening of outgoing waves in 2D random media: A comparison between the Markov approximation and numerical simulations, Bull. Seismol. Soc. Am. 90:914–928.CrossRefGoogle Scholar
  11. Flatté, S. M., and Wu, R.-S., 1988, Small-scale structure in the lithosphere and asthenosphere deduced from arrival-time and amplitude fluctuations at NORSAR, J. Geophys. Res. 93:6601–6614.CrossRefGoogle Scholar
  12. Flatté, S. M., and Xie, X. B., 1992, The transverse coherence function at NORSAR over a wide range of separations, Geophys. Res. Lett. 19:557–560.CrossRefGoogle Scholar
  13. Flatté, S. M., Dashen, R., Munk, W. H., Watson, K. M., and Zachariasen, F., 1979, Sound Transmission Through a Fluctuating Ocean, Cambridge University Press, New York.Google Scholar
  14. Flatté, S. M., Wu, R.-S., and Shen, Z. K., 1991, Nonlinear inversion of phase and amplitude coherence functions at NORSAR for a model of nonuniform heterogeneities, Geophys. Res. Lett. 18:1269–1272.CrossRefGoogle Scholar
  15. Frankel, A., and Clayton, R.W., 1986, Finite difference simulations of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res. 91:6465–6489.CrossRefGoogle Scholar
  16. Goff, J. A., and Holliger, K., 1999, Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: Combined stochastic analyses of KTB velocity and lithology logs, J. Geophys. Res. 104:13,169–13,182.CrossRefGoogle Scholar
  17. Hoshiba, M., 2000, Large fluctuation of wave amplitude produced by small fluctuation of velocity structure, Phys. Earth Planet. Int. 120:201–218.CrossRefGoogle Scholar
  18. Ishimaru, A., 1978, Wave Propagation and Scattering in Random Media, Vol. II, Academic Press, New York.Google Scholar
  19. Jones, A. G., and Holliger, K., 1997, Spectral analyses of the KTB sonic and density logs using robust nonparametric methods, J. Geophys. Res. 102:18,391–18,403.CrossRefGoogle Scholar
  20. Liu, Y. B. and Wu, R.-S., 1994, A comparison between phase screen, finite difference, and eigenfunction expansion calculations for scalar waves in inhomogeneous media, Bull. Seis. Soc. Am. 84:1154–1168.Google Scholar
  21. Liu, X. P., Wu, R.-S., and Xie, X. B., 1994, Joint coherence function analysis of seismic travel times and amplitude fluctuations observed on southern California seismographic network and its geophysical significance, EOS 75:482.Google Scholar
  22. McLaughlin, K. L. and Anderson, L. M., 1987, Stochastic dispersion of short-period P-waves due to scattering and multipathing, Geophys. J. R. Astron. Soc. 89:933–963.CrossRefGoogle Scholar
  23. Munk, W. H., and Zachariasen, F., 1976, Sound propagation through a fluctuating ocean-theory and observation, J. Acous. Soc. Am. 59:818–838.CrossRefGoogle Scholar
  24. Nikolaev, A. V., 1975, The Seismics of Heterogeneous and Turbid Media (translated from Russian), Nauka, Moscow.Google Scholar
  25. Reeve, D. E., and Uscinski, B. J., 1990, Simulation of acoustic signal fluctuations and their impact on array output, in: Computational Acoustics,Proceedings of the 2nd IMACS Symposium, Volume 3 (D. Lee, A. Cakmak, and R. Vichnevetsky, eds.), North-Holland, Amsterdam, pp. 225–236.Google Scholar
  26. Rytov, S. M., Kravtsov, Y. A. and Tatarskii, V. J., 1987, Principles of Statistical Radiophysics,Springer-Verlag, New York.CrossRefGoogle Scholar
  27. Sato, H., 1979, Wave propagation in one-dimensional inhomogeneous elastic media, J. Phys. Earth 27:455–466.CrossRefGoogle Scholar
  28. Sato, H., and Fehler, M., 1998, Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer-Verlag, New York.CrossRefGoogle Scholar
  29. Spivack, M. and Uscinski, B. J., 1989, The split-step solution in random wave propagation, J. Comput. Appl. Math. 27:349–361.CrossRefGoogle Scholar
  30. Tatarskii, V. L., 1961, Wave Propagation in a Turbulent Medium,Dover, New York.Google Scholar
  31. Tatarskii, V. L., 1971, The Effects of the Turbulent Atmosphere on Wave Propagation (translated from Russian), National Technical Information Service, Springfield.Google Scholar
  32. Uscinski, B. J., 1989, Numerical simulations and moments of the field from a point source in a random medium, J. Mod. Optics 36:1631–1643.CrossRefGoogle Scholar
  33. Wu, R.-S., 1982, Attenuation of short period seismic waves due to scattering, Geophys. Res. Lett. 9:9–12.CrossRefGoogle Scholar
  34. Wu, R.-S., 1989a, Imaging principle of randomly heterogeneous media by transmitted waves, in: Geophysics in China in the Eighties, Commemoration of the 80th Birthday of Professor Fu Cheng-yi (in Chinese with English abstract) (Y.T. Chen, ed.), Academic Book and Periodicals Press, Beijing, pp. 360–378.Google Scholar
  35. Wu, R.-S., 1989b, The perturbation method for elastic waves scattering, Pure Appl. Geophys. 131:605–637.CrossRefGoogle Scholar
  36. Wu, R.-S., 2002, Wave propagation, scattering and imaging using dual-domain one-way and one-return propagators, Pure Appl. Geophys, in press.Google Scholar
  37. Wu, R.-S., and Aki, K., 1985, Elastic wave scattering by random medium and the small-scale inhomogeneities in the lithosphere, J. Geophys. Res. 90:10,261–10,273.CrossRefGoogle Scholar
  38. Wu, R.-S., and Matte, S. M., 1990, Transmission fluctuations across an array and heterogeneities in the crust and upper mantle, Pure Appl. Geophys. 132:175–196.CrossRefGoogle Scholar
  39. Wu, R.-S., and Liu, X. P., 1995, Random layers found by joint coherence analyses of array data observed at NORSAR and SCSN, EOS 76:F384.Google Scholar
  40. Wu, R.-S., and Xie, X. B., 1991, Numerical tests of stochastic tomography, Phys. Earth Planet. Int. 67:180–193.CrossRefGoogle Scholar
  41. Wu, R.-S., Xie, X. B., and Liu, X. P., 1994a, Numerical simulations of joint coherence functions observed on seismic arrays and comparison with NORSAR data, EOS 75:478.Google Scholar
  42. Wu, R-S., Xu, Z., and Li, X. P., 1994b, Heterogeneity spectrum and scale-anisotropy in the upper crust revealed by the German continental deep-drilling (KTB) holes, Geophys. Res. Lett. 21:911–914.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ru-Shan Wu
    • 1
  1. 1.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations