Large Enhancements in Dissociative Electron Attachment to Chlorine Containing Molecules Adsorbed on H2O Ice

Implications for Atmospheric Ozone Depletion
  • Q.-B. Lu
  • L. Sanche
Conference paper


The study of chlorine-containing molecules, especially chlorofluoro-carbons (CFCs), has received continued interest mainly because of their well-known association with the ozone depletion in the Earth’s stratosphere. It was first proposed1 that chlorine atoms are produced by photolysis of such species as CF2C12 (CFC-12) and CFCl3 (CFC-11). For the former species, the reaction is: CF2Cl2 + hv→Cl + CF2Cl. The resultant Cl atom destroys ozone via a (Cl, C1O) reaction chain. The significance of CFCs to the ozone depletion has been well recognized since the discovery of the Antarctic ozone hole.2 Nevertheless, the above photodissociation model predicts a maximum rate of Cl atom production in the upper stratosphere at altitudes of 30∼40 km and a negligible rate below 20 km.1 However, the ozone hole is found at the lower polar stratosphere at an altitude of ∼15 km. It is known that the creation of the ozone hole is closely related to the existence of polar stratospheric clouds (PSCs) that form in the Antarctic stratosphere due to the extreme cold temperature; these PSCs consist mainly of condensed-phase water ice and nitric acid/ice.3,4 The formation of the ozone hole has been attributed to heterogeneous reactions occurring on surfaces of PSC ice particles, which convert chlorine from the inactive compounds (HCl and ClONO2) into reactive Cl2: HCl + ClONO2 → Cl2 + HNO3.3,4 Upon photolysis, Cl2 releases chlorine to destroy O3.


Ozone Depletion Ozone Hole Incident Electron Energy Dissociative Electron Attachment Polar Stratospheric Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Molina and F. S. Rowland, Nature 249, 810 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    J. C., Farman, B. G. Gardiner and J. D. Shanklin, Nature 315, 207 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    S. Solomon, R. R. Garcia, F. S. Rowland and D.-J. Wuebbles, Nature 321, 755 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    M. J. Molina, T.-L. Tso, L. T. Molina and F. C.-Y. Wang, Science 238, 1253 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    E. Illenberger, H.-U. Scheunemann and H. Baumgärtel, Chem. Phys. 37, 21 (1979).CrossRefGoogle Scholar
  6. 6.
    L. G. Christophorou, J. K. Olthoff, and Y. Wang, J. Phys. Chem. Ref. Data 26, 1205(1997).ADSCrossRefGoogle Scholar
  7. 7.
    D. Smith and N. G. Adams, Top. Curr. Chem. 89, 1 (1980).CrossRefGoogle Scholar
  8. 8.
    F. C. Fehsenfeld, P. J. Crutzen, A. L. Schmeltekopf, C. J. Howard, D. L. Albritton, E. E Ferguson, J. A. Davidson, H. I. Schiff, J. Geophys. Res. 81, 4454 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    N. V. Klassen, in Radiation Chemistry: Principles and Applications, ed. by Farhataziz and M. A. Rodgers, (VCH, New Year, 1987), chap.2.Google Scholar
  10. 10.
    A. D. Bass and L. Sanche, J. Chem. Phys. 95, 2910 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    W. C. Simpson, T. M. Orlando, L. Parenteau,; K. Nagesha, L. J. Sanche, Chem. Phys. 108, 5027 (1998).ADSGoogle Scholar
  12. 12.
    Q.-B. Lu and T. E. Madey, Phys. Rev. Lett. 82, 4122(1999) ADSCrossRefGoogle Scholar
  13. Q.B. Lu,T. E. Madeyibid.. Surf. Sci. 451, 238 (2000)ADSCrossRefGoogle Scholar
  14. Q.B. Lu,T. E. Madey, J. Phys. Chem. B105, 2779 (2001).CrossRefGoogle Scholar
  15. 13.
    Q.-B. Lu and L. Sanche, Phys. Rev. B63, 153403 (2001).ADSCrossRefGoogle Scholar
  16. 14.
    Q.-B. Lu and T. E. Madey, J. Chem. Phys. Ill, 2861 (1999).ADSCrossRefGoogle Scholar
  17. 15.
    Q.-B. Lu and L. Sanche, Phys. Rev. Lett. 87, 078501 (2001).ADSCrossRefGoogle Scholar
  18. 16.
    R. Marsolais, M. Deschênes and L. Sanche, Rev. Sci. Instrum. 60, 2724 (1989)ADSCrossRefGoogle Scholar
  19. K. Nagesha, J. Gamache, A. D. Bass and L. Sanche, Rev. Sci. Instrum. 68, 3883 (1997).ADSCrossRefGoogle Scholar
  20. 17.
    P. Ayotte, J. Gamache, A. D. Bass, I.I. Fabrikant, and L. Sanche, J. Chem. Phys. 106, 749 (1996).ADSCrossRefGoogle Scholar
  21. 18.
    A. D. Bass, J. Gamache, P. Ayotte, L. Sanche, J. Chem. Phys. 104, 4258 (1996).ADSCrossRefGoogle Scholar
  22. 19.
    Q.-B. Lu and L. Sanche, J. Chem. Phys. 115, 5711 (2001).ADSCrossRefGoogle Scholar
  23. 20.
    M. A. Huels, L. Parenteau, and L. Sanche, J. Chem. Phys. 100, 3940 (1994).ADSCrossRefGoogle Scholar
  24. 21.
    R. Azria, Y. Le Coat, M. Lachgar, M. Tronc, L. Parenteau and L. Sanche, Surf. Sci. 451, 91 (2000).ADSCrossRefGoogle Scholar
  25. 22.
    A. Migus, Y. Gauduel, J. L. Martin, and A. Antonetti, Phys. Rev. Lett. 58, 1559 (1987).ADSCrossRefGoogle Scholar
  26. 23.
    R. Laenen, T. Roth, and A. Laubereau, Phys. Rev. Lett. 85, 50 (2000).ADSCrossRefGoogle Scholar
  27. 24.
    S. J. Oltmans and D. J. Hofmann, Nature 374, 146 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Q.-B. Lu
    • 1
  • L. Sanche
    • 1
  1. 1.Group of the Canadian Institutes of Health Research in the Radiation Sciences, Faculty of MedicineUniversity of SherbrookeSherbrookeCanada

Personalised recommendations