Calculation of Electron Affinities

A Roadmap
  • Thom H. DunningJr.
  • Kirk A. Peterson
  • Tanja Van Mourik
Conference paper

Abstract

Molecular anions are important in many gas- and solution-phase chemical processes; examples include the classic Waiden inversion reaction in organic chemistry and the complex set of anion-molecule reactions that establish the equilibrium concentrations of negatively-charged species in the upper atmosphere. Molecular anions also play an important role in the scattering or capture of electrons by molecules, including dissociative attachment processes—a subject of this symposium. However, little definitive experimental information exists on the structure and properties of molecular anions, other than electron affinities, which can be accurately measured by photodetachment spectroscopy.1

Keywords

Recombination Dunham 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a recent survey of atomic and molecular electron affinities determined using photoelectron techniques, see J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer III, S. Nandi, and G. B. Ellison, Chem. Rev. (to be published).Google Scholar
  2. 2.
    M. J. Travers, D. C. Cowles, and G. B. Ellison, Chem. Phys. Lett. 164, 449 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    S. E. Bradforth, E. H. Kim, D. W. Arnold, and D. M. Neumark, J. Chem. Phys. 98, 800 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    I. Shavitt, Mol. Phys. 94, 3 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    D. Cremer, “Møller-Plesset Perturbation Theory,” in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).Google Scholar
  6. 6.
    J. Gauss, “Coupled-cluster Theory,” in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).Google Scholar
  7. 7.
    M. W. Schmidt and M. S. Gordon, Ann. Rev. Phys. Chem. 49, 233 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    K. Andersson, “Complete Active Space Self-consistent Field (CASSCF) Second Order Perturbation Theory (CASPT2),” in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).Google Scholar
  9. 9.
    S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 95, 8227 (1991)ADSCrossRefGoogle Scholar
  10. X. Li and J. Paldus, J. Chem. Phys. 107, 6257 (1997).ADSCrossRefGoogle Scholar
  11. 10.
    For a discussion of size extensivity, see For a discussion of size extensivity, see J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chem. Symp. 10, 1 (1976)CrossRefGoogle Scholar
  12. R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem. 14, 561 (1978).CrossRefGoogle Scholar
  13. 11.
    J. Olsen, O. Christiansen, J. Olsen, and P. Jørgensen, J. Chem. Phys. 105, 5082 (1996)Google Scholar
  14. O. Christiansen, J. Olsen, P. Jørgensen, H. Koch, and P.-A. Malmqvist, Chem. Phys. Lett. 261, 369 (1996)ADSCrossRefGoogle Scholar
  15. J. Olsen, P. Jørgensen, T. Helgaker, and O. Christiansen, J. Chem. Phys. 112, 9736 (2000)ADSCrossRefGoogle Scholar
  16. T. H. Dunning, Jr. and K. A. Peterson, J. Chem. Phys. 108, 4761 (1998)ADSCrossRefGoogle Scholar
  17. M. L. Leininger, W. D. Allen, H. F. Schaefer III, and D.C. Sherrill, J. Chem. Phys.112 9213(2000)ADSCrossRefGoogle Scholar
  18. 12.
    See, e.g., T. H. Dunning, Jr., J. Phys. Chem. A 104, 9062 (2000) and references therein.CrossRefGoogle Scholar
  19. 13.
    See, e.g., R. J. Bartlett, J. Phys. Chem. 93, 1697 (1989)CrossRefGoogle Scholar
  20. T. J. Lee and G. E. Scuseria„ in Quantum Mechanical Calculations with Chemical Accuracy, ed. by S. R. Langhoff, (Kluwer Academic Publishers, Dordrecht, 1997).Google Scholar
  21. 14.
    K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989)ADSCrossRefGoogle Scholar
  22. K. Raghavarchi, J. A. Pople, E. S. Replogle, and M. Head-Gordon, J. Phys. Chem. 94, 5579 (1990).CrossRefGoogle Scholar
  23. 15.
    T. H. Dunning, Jr., J. Chem. Phys. 90, 1002 (1989).ADSCrossRefGoogle Scholar
  24. 16.
    A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).ADSCrossRefGoogle Scholar
  25. 17.
    R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)ADSCrossRefGoogle Scholar
  26. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).ADSCrossRefGoogle Scholar
  27. 18.
    D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995)ADSCrossRefGoogle Scholar
  28. K. A. Peterson and T. H. Dunning, Jr. (unpublished).Google Scholar
  29. 19.
    T. H. Dunning, Jr., K. A. Peterson, and D. E. Woon, “Basis Sets: Correlation Consistent,” in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).Google Scholar
  30. 20.
    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, (Van Nostrand, Princeton, 1979).Google Scholar
  31. 21.
    H.-J. Werner, P. J. Knowles, R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Leininger, R. Lindh, A. W. Lloyd, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. A. Peterson, R. M. Pitzer, P. Pulay, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone, and T. Thorsteinsspn, MOLPRO Quantum Chemistry Package 2000.1, 2000.Google Scholar
  32. C. Hampel, K. A. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1 (1992)ADSCrossRefGoogle Scholar
  33. P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1994).ADSCrossRefGoogle Scholar
  34. 22.
    R. J. Bartlett, in Encyclopedia of Computational Chemistry, ed. by P. R. v. Schleyer, (John Wiley & Sons Ltd., New York, 1998).Google Scholar
  35. W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, Chem. Phys. Lett. 187, 21 (1991).ADSCrossRefGoogle Scholar
  36. 23.
    T. H. Dunning, Jr. and K. A. Peterson, J. Chem. Phys. 113, 7799 (2000).ADSCrossRefGoogle Scholar
  37. 24.
    J. A. Sordo, J. Chem. Phys. 114, 1974 (2001).ADSCrossRefGoogle Scholar
  38. 25.
    For a corresponding statistical analysis of atomization energies, see K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, and W. Klopper, J. Chem. Phys. 112, 9229 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Thom H. DunningJr.
    • 1
    • 2
  • Kirk A. Peterson
    • 3
    • 4
  • Tanja Van Mourik
    • 5
  1. 1.North Carolina Supercomputing CenterResearch Triangle ParkUSA
  2. 2.Department of ChemistryUniversity of North CarolinaChapel HillUSA
  3. 3.Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA
  4. 4.Department of ChemistryWashington State UniversityRichlandUSA
  5. 5.Chemistry DepartmentUniversity College LondonLondonUK

Personalised recommendations