Importance of Jahn-Teller Coupling in the Dissociative Recombination of H3+ by Low Energy Electrons

Hyperspherical Approach
  • C. H. Greene
  • V. Kokoouline
  • B. D. Esry

Abstract

Dissociative recombination (DR) of the H 3 + ion, namely the process
$$H_3^ + + {e^ - } \to {H_2} + H or H + H + H,$$
(1)
has attracted extensive attention since the discovery of H 3 + in diffuse interstellar clouds.1 But despite significant experimental2,3 and theoretical4,5 progress, the mechanism of the Reaction (1) with slow electrons is still poorly understood. For one thing, there is no theoretical model compatible with the large rate constant of Reaction (1). For another, there is no consistent explanation of the fact that different experiments yield such different DR rates.

Keywords

Microwave Recombination Boulder Plasil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Oka, Phil. Trans. R. Soc. Lond. A 358, (2000).Google Scholar
  2. 2.
    G. Sundstrom, J.R. Mowat, H. Danared, S. Datz, L. Brostrom, A. Filevich, A. Kallberg, S. Mannervik, K.G. Rensfelt, P. Sigray, M. Arugglas, and M. Larsson, Science 263, 785 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    M.J. Jensen, H.B. Pedersen, C.P. Safvan, K. Seiersen, X. Urbain, and L.H. Andersen, Phys. Rev. A 63, 052701 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    A.E. Orel and K.C. Kulander, Phys. Rev. Lett. 71, 4315 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    A.E. Orel, I.F. Schneider, and A. Suzor-Weiner, Phil. Trans. R. Soc. Lond. A 358, 3293 (2000).CrossRefGoogle Scholar
  6. 6.
    J.A. Stephens and C.H. Greene, Phys. Rev. Lett. 72, 1624 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Stephens and C.H. Greene, J. Chem. Phys. 102, 1579 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    M.C. Bordas, L.J. Lembo, and H. Helm, Phys. Rev. A 44, 1817 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    C.H. Greene and Ch. Jungen, Adv. At. Mol. Phys. 21, 51 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    Ch. Jungen, Molecular Applications of Quantum Defect Theory, Institute of Physics (Bristol, 1996).Google Scholar
  11. 11.
    T.F. O'Malley, Phys. Rev. 150, 14 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    I. Mistrík, R. Reichle, U. Muller, H. Helm, M. Jungen, and J.A. Stephens, Phys. Rev. A 61, 033410 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    H.C. Longuet-Higgins, in Advances in Spectroscopy (Interscience, New York, 1961), Vol. II, p.429.Google Scholar
  14. 14.
    V. Kokoouline, C.H. Greene, and B.D. Esry, Nature 412, 891 (2001).ADSCrossRefGoogle Scholar
  15. 15 R.
    R. Jaquet, W. Cencek, W. Kutzelnigg, and J. Rychlewski, Chem. Phys. 108, 2837 (1998).ADSGoogle Scholar
  16. 16.
    CD. Lin, Phys. Rep. 257, 2 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    A. Staib and W. Domcke, Z. Phys. D 16, 275 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    A. Giusti, J. Phys. B 13, 3867 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    J. Glosík, R. Plasil, V. Poterya, P. Kurdna, and M. Tichý, Chem. Phys. Lett. 331, 209 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    M. Larsson, Phil. Trans. R. Soc. Lond. A 358, 2433 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    S. Laubé, A. Le Padellec, O. Sidko, C. Rebrion-Rowe, J.B.A. Mitchell, and B.R. Rowe, J. Phys. B: At. Mol. Opt. Phys. 31, 2111 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • C. H. Greene
    • 1
  • V. Kokoouline
    • 1
  • B. D. Esry
    • 2
  1. 1.Department of Physics and JILAUniversity of ColoradoBoulderUSA
  2. 2.Department of Physics, Cardwell HallKansas State UniversityManhattanUSA

Personalised recommendations