Skip to main content

Targeting PDGF Receptors in Cancer ­ Rationales and Proof of Concept Clinical Trials

  • Chapter
New Trends in Cancer for the 21st Century

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 532))

Abstract

The platelet-derived growth factors (PDGF) are a pleotrophic family of peptide growth factors that signal through cell surface, tyrosine kinase receptors (PDGFR) and stimulate various cellular functions including growth, proliferation, and differentiation. To date, PDGF expression has been demonstrated in a number of different solid tumors, from glioblastomas to prostate carcinomas. In these various tumor types, the biologic role of PDGF signaling can vary from autocrine stimulation of cancer cell growth to subtler paracrine interactions involving adjacent stroma and vasculature. The tyrosine kinase inhibitor imatinib mesylate (formerly STI571, GleevecTM, Novartis Pharmaceuticals Corp, East Hanover, NJ) blocks activity of the Bcr-Abl oncoprotein and the cell surface tyrosine kinase receptor c-Kit, and as such was recently approved for several indications in the treatment on chronic myeloid leukemia and gastrointestinal stromal tumors. In both of these examples the target protein was identified by an oncogenic, activating mutation. Imatinib mesylate is also a potent inhibitor of PDGFR kinase and is currently being evaluated for the treatment of chronic myelomonocytic leukemia and glioblastoma multiforme, based upon evidence in these diseases of activating mutations in PDGFR. However, the PDGF pathway may represent a therapeutic target in other solid tumors in which it is not part of the oncogenic transformation. In order to investigate the potential biologic implications of inhibiting PDGFR in these tumor types, clinical trials that investigate both established clinical endpoints of response and benefit, as well as surrogate endpoints that describe the biologic significance of PDGF inhibition in vivo are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344:1031–7.

    Article  PubMed  CAS  Google Scholar 

  2. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344:1038–42.

    Article  PubMed  CAS  Google Scholar 

  3. Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001; 344:1052–6.

    Article  PubMed  CAS  Google Scholar 

  4. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002; 347:472–80.

    Article  PubMed  CAS  Google Scholar 

  5. van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 2001; 358:1421–3.

    Article  PubMed  Google Scholar 

  6. Johnsson A, Heldin CH, Wasteson A, et al. The c-sis gene encodes a precursor of the B chain of platelet-derived growth factor. Embo J 1984; 3:921–8.

    PubMed  CAS  Google Scholar 

  7. Betsholtz C, Johnsson A, Heldin CH, et al. cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature 1986; 320:695–9.

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Ponten A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol 2000; 2:302–9.

    Article  PubMed  CAS  Google Scholar 

  9. Koch CA, Anderson D. Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 1991; 252:668–74.

    Article  PubMed  CAS  Google Scholar 

  10. Yarden Y, Escobedo JA, Kuang WJ, et al. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 1986; 323:226–32.

    Article  PubMed  CAS  Google Scholar 

  11. Wennstrom S, Hawkins P, Cooke F, et al. Activation of phosphoinositide 3-kinase is required for PDGFstimulated membrane ruffling. Curr Biol 1994; 4:385–93.

    Article  PubMed  CAS  Google Scholar 

  12. Wennstrom S, Siegbahn A, Yokote K, et al. Membrane ruffling and chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3’ kinase. Oncogene 1994; 9:651–60.

    PubMed  CAS  Google Scholar 

  13. Bos JL. Ras-like GTPases. Biochim Biophys Acta 1997; 1333:M19–31.

    PubMed  CAS  Google Scholar 

  14. Deuel TF. Polypeptide growth factors: roles in normal and abnormal cell growth. Annu Rev Cell Biol 1987; 3:443–92.

    Article  PubMed  CAS  Google Scholar 

  15. Ostman A, Heldin CH. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 2001; 80:1–38.

    Article  PubMed  CAS  Google Scholar 

  16. Sundberg C, Ljungstrom M, Lindmark G, Gerdin B, Rubin K. Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and colorectal adenocarcinoma. Am J Pathol 1993; 143:1377–88.

    PubMed  CAS  Google Scholar 

  17. Pietras K, Ostman A, Sjoquist M, et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 2001; 61:2929–34.

    PubMed  CAS  Google Scholar 

  18. Heuchel R, Berg A, Tallquist M, et al. Platelet-derived growth factor beta receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3’ kinase signaling. Proc Natl Acad Sci U S A 1999; 96:11410–5.

    Article  PubMed  CAS  Google Scholar 

  19. Fleming TP, Saxena A, Clark WC, et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 1992; 52:45503.

    Google Scholar 

  20. Guha A, Dashner K, Black PM, Wagner JA, Stiles CD. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 1995; 60:168–73.

    Article  PubMed  CAS  Google Scholar 

  21. Hermanson M, Funa K, Hartman M, et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992; 52:3213–9.

    PubMed  CAS  Google Scholar 

  22. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc Natl Acad Sci U S A 1996; 93:14845–50.

    Article  PubMed  CAS  Google Scholar 

  23. Jousset C, Carron C, Boureux A, et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. Embo J 1997; 16:69–82.

    Article  PubMed  CAS  Google Scholar 

  24. DiMaio D, Lai CC, Klein O. Virocrine transformation: the intersection between viral transforming proteins and cellular signal transduction pathways. Annu Rev Microbiol 1998; 52:397–421.

    Article  PubMed  CAS  Google Scholar 

  25. Crosby JR, Seifert RA, Soriano P, Bowen-Pope DF. Chimaeric analysis reveals role of Pdgf receptors in all muscle lineages. Nat Genet 1998; 18:385–8.

    Article  PubMed  CAS  Google Scholar 

  26. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-Bdeficient mice. Science 1997; 277:242–5.

    Article  PubMed  CAS  Google Scholar 

  27. Fudge K, Bostwick DG, Stearns ME. Platelet-derived growth factor A and B chains and the alpha and beta receptors in prostatic intraepithelial neoplasia. Prostate 1996; 29:282–6.

    Article  PubMed  CAS  Google Scholar 

  28. Fudge K, Wang CY, Stearns ME. Immunohistochemistry analysis of platelet-derived growth factor A and B chains and platelet-derived growth factor alpha and beta receptor expression in benign prostatic hyperplasias and Gleason-graded human prostate adenocarcinomas. Mod Pathol 1994; 7:549–54.

    PubMed  CAS  Google Scholar 

  29. Chott A, Sun Z, Morganstern D, et al. Tyrosine kinases expressed in vivo by human prostate cancer bone marrow metastases and loss of the type 1 insulin-like growth factor receptor. Am J Pathol 1999; 155:1271–9.

    Article  PubMed  CAS  Google Scholar 

  30. Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1:203–9.

    Article  PubMed  CAS  Google Scholar 

  31. Ko YJ, Small EJ, Kabbinavar F, et al. A multi-institutional phase ii study of SU101, a platelet-derived growth factor receptor inhibitor, for patients with hormone-refractory prostate cancer. Clin Cancer Res 2001; 7:800–5.

    PubMed  CAS  Google Scholar 

  32. Bubley GJ, Carducci M, Dahut W, et al. Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J Clin Oncol 1999; 17:3461–7.

    PubMed  CAS  Google Scholar 

  33. D’Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. Jama 1998; 280:969–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

George, D. (2003). Targeting PDGF Receptors in Cancer ­ Rationales and Proof of Concept Clinical Trials. In: Llombart-Bosch, A., Felipo, V. (eds) New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, vol 532. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0081-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0081-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4914-3

  • Online ISBN: 978-1-4615-0081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics