Taurine 5 pp 357-364 | Cite as

Production of Nitric Oxide by Activated Microglial Cells Is Inhibited by Taurine Chloramine

  • Valeria Serban
  • Michael R. Quinn
  • Yong Liu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 526)


Microglia are considered to be brain resident macrophages and along with astrocytes are the major immunoresponsive cells in the CNS1,2. When activated by bacterial endotoxin or cytokines, microglia respond rapidly by proliferating, changing morphology, and by producing proinflammatory cytokines and NO2-4. Although transient activation of microglia contributes to brain repair processes, chronic activation as occurs in CNS viral infections5, AIDS dementia complex6, Alzheimer’s disease7, multiple sclerosis8,9, traumatic injury, and stroke, leads to neuronal cell death as a result of inflammation and oxidative stress2,4,10 Production of nitric oxide is of particular importance in the pathology of several CNS disorders because of the toxicity of its byproducts, e.g. peroxynitrite. The increased production of NO by activated microglia results primarily from increased expression of the iNOS gene. The therapeutic potential of downregulating activation of microglia and/or production of NO may be of significant clinical value in developing strategies for treatment of neurodegeneative diseases.


Nitric Oxide Microglial Cell iNOS mRNA iNOS Gene Murine Microglial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kreutzberg, G.W., 1996, Microglia: a sensor for pathological events in the CNS.Trends Neurosci.19: 312–318.PubMedCrossRefGoogle Scholar
  2. 2.
    Minghetti, L., and Levi, G., 1998, Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide.Prog. Neurobiol.54: 99–125.PubMedCrossRefGoogle Scholar
  3. 3.
    Ding, M., St. Pierre, B.A., Parkinson, J.F., Medberry, P., Wong, J.L., Rogers, N.E., Ignarro, L.J., and Merrill, J.E., 1997, Inducible nitric-oxide synthase and nitric oxide production in human fetal astrocytes and microglia.J. Biol. Chem.272: 11327–11335.PubMedCrossRefGoogle Scholar
  4. 4.
    González-Scarano, F., and Baltuch, G., 1999, Microglia as mediators of inflammatory and degenerative diseases.Ann. Rev. Neurosci.22: 219–240.PubMedCrossRefGoogle Scholar
  5. 5.
    Koprowski, H., Zheng, Y.M., Heber-Katz, E., Fraser, N., Rorke, L., Fu, Z.F., Hanlon, C., and Dietzschold, B., 1993In vivoexpression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc. Natl. Acad. Sci. USA90: 3024–3027.Google Scholar
  6. 6.
    Koka, P., He, K., Zack, J.A., Kitchen, S., Peacock, W., Fried, I., Tran, T., Yashar, S.S., and Merill, J.E., 1995, Human immunodeficiency virus 1 enveloped proteins induce interleukin 1, tumor necrosis factor a, and nitric oxide in glial cultures derived from fetal, neonatal, and adult human brain.J. Exp. Med.182, 941–952.PubMedCrossRefGoogle Scholar
  7. 7.
    Griffin, W.S., Sheng, J.G., Royston, M.C., Gentleman, S.M., McKenzie, J.E., Graham, D.I., Roberts, G.W., and Mrak, R.E., 1998, Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression.Brain Pathol.8: 65–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Merrill, J.E., Ignarro, L.J., Sherman, M.P., Melinek, J., and Lane, T.E., 1993, Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide.J. Immunol.151: 2132–2141.PubMedGoogle Scholar
  9. 9.
    Ding, M., Zhang, M., Wong, J.L., Rogers, N.E., Ignarro, L.J., and Voskuhl, R.R., 1998, Cutting Edge: Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice.J. Immunol.160: 2560–2564.PubMedGoogle Scholar
  10. 10.
    Mayer, A.M.S., 1998, Therapeutic implications of microglia activation by lipopolysaccharide and reactive oxygen species generation in septic shock and central nervous system pathologies: a review.Medicine58: 377–385.Google Scholar
  11. 11.
    Park, E., Quinn, M.R., Wright, C.E., and Schuller-Levis, G., 1993, Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells.J. Leukoc. Biol.54: 119–124.PubMedGoogle Scholar
  12. 12.
    Marcinkiewicz, J., Grabowska, A., Bereta, J., and Stelmaszynska, T., 1995, Taurine chloramine, a product of activated neutrophils, inhibitsin vitrothe generation of nitric oxide and other macrophage inflammatory mediators.J. Leukoc. Biol.58: 667–674.PubMedGoogle Scholar
  13. 13.
    Quinn, M.R., and Schuller-Levis,G.B., 1999, Taurine Chloramine, an Inhibitor of iNOS Expression and a Potential Modulator of Inflammation. InMolecular and Cellular Biology of Nitric Oxide(J. Laskin and D. Laskin, eds.), Marcel Dekker, Inc., New York, pp. 309–331.Google Scholar
  14. 14.
    Kontny, E., Grabowska, A., Kowalczewski, J., Kurowska, M., Janicka, I., Marcinkiewicz, J., and Maslinski, W., 1999, Taurine chloramine inhibition of cell proliferation and cytokine production by rheumatoid arthritis fibroblast-like synoviocytes.Arthritis Rheum.42: 2552–2560.PubMedCrossRefGoogle Scholar
  15. 15.
    Barua, M., Liu, Y., and Quinn, M.R., 2001, Taurine chloramine inhibits nitric oxide synthase and TNF-a gene expression in activated alveolar macrophages: Decreased NF-KB activation and IxB kinase activity.J. Immunol.167: 2275–2281.PubMedGoogle Scholar
  16. 16.
    Weiss, S.J.R., Klein, A., Slivka, A., and Wei, M., 1982, Chlorination of taurine by human neutrophils: evidence for hypochlorous acid generation.J. Clin. Invest.70: 598–607.PubMedCrossRefGoogle Scholar
  17. 17.
    Grisham, M.B., Jefferson, M.M., Melon, D.F., and Thomas, E.L., 1984, Chlorination of endogenous amines by isolated neutrophils.J. Biol. Chem.259: 10404–10413.PubMedGoogle Scholar
  18. 18.
    Nagra, R.M., Becher, B., Tourtellotte, W.W., Antel, J.P., Gold, D., Paladino, T., Smith, R.A., Nelson, J.R., and Reynolds, W.F., 1997, Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis.J. Neuroimmunol.78: 97–107.PubMedCrossRefGoogle Scholar
  19. 19.
    Reynolds, W.F., Rhees, J., Maciejewski, D., Paladino, T., Sieburg, H., Maki, R.A., and Massillon, E., 1999, Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer’s disease.Exp. Neurology155: 31–41.CrossRefGoogle Scholar
  20. 20.
    Liu, T., Tonna-DeMasi, M., Park, E., Schuller-Levis, G., and Quinn, M.R., 1998, Taurine chloramine inhibits production of nitric oxide and prostaglandin E2in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase expression.Molec. Brain Res.59: 189–195.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu, Y., Schuller-Levis, G., and Quinn, M.R., 1999, Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 production is inhibited by taurine chloramine in rat C6 glioma cells.Immunol. Lett.70: 9–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F., 1990, Immortalization of murine microglial cells by av-rafiv-myccarrying retrovirus.J. Neuroimmunol.27: 229–237.PubMedCrossRefGoogle Scholar
  23. 23.
    Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., and Kettenmann, H., 1992, An immortalized cell line expresses properties of activated microglial cells.J. Neurosci. Res.31: 616–621.PubMedCrossRefGoogle Scholar
  24. 24.
    McCarthy, K.D., and de Villis, J., 1989, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue.J. Cell Biol.85: 890–902.CrossRefGoogle Scholar
  25. 25.
    Murphy, W.J., 1999, Transcriptional regulation of the genes encoding nitric oxide synthase. InCellular and Molecular Biology of Nitric Oxide(J.D. Laskin and D.L. Laskin, eds.,), Marcel Dekker, Inc., New York, pp. 1–56.Google Scholar
  26. 26.
    Jana, M., Liu, X., Koka, S., Ghosh, S, Petro, T.M., and Pahan, K., 2001, Ligation of CD40 stimulates the induction of nitric-oxide synthase in microglial cells.J. Biol. Chem.276: 44527–44533.PubMedCrossRefGoogle Scholar
  27. 27.
    Han, I.-O., Kim, K.-W., Ryu, J.H., and Kim, W.-K., 2002, p38 Mitogen-activated protein kinase mediates lipopolysaccharide, not interferon-y-induced nitric oxide synthase expression mouse BV2 microglial cells.Neurosci. Leu.325: 9–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Valeria Serban
    • 1
    • 3
  • Michael R. Quinn
    • 2
  • Yong Liu
    • 1
  1. 1.Center for Developmental NeuroscienceStaten IslandUSA
  2. 2.Samaritan ProgramTemple University HospitalPhiladelphiaUSA
  3. 3.Laboratory of Molecular Cell Signaling, Department of Developmental BiochemistryNew York State Institute for Basic Research in Developmental DisabilitiesUSA

Personalised recommendations