Skip to main content

Investigating the Role of Nitric Oxide in Regulating Blood Flow and Oxygen Delivery from in Vivo Electrochemical Measurements in Eye and Brain

  • Chapter
Oxygen Transport to Tissue XXIV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 530))

Abstract

We have previously shown from direct, in vivo measurements of NO in cats with recessed electrochemical microsensors that NO mediates increases in ONH blood flow during functional activation of the eye by flickering light. We have also reported that there are low frequency (< 15 cycles/min) spontaneous oscillations in NO that appear to be passively coupled to oscillations in blood flow at similar frequencies in the cat ONH. In this paper, we describe similarities between in vivo measurements of NO in the ONH of the cat eye and in the cortex of the rat brain. These data are consistent with a role for NO in the coupling of blood flow with increases in neuronal activity, autoregulation of blood flow, hyperemia, and vasodilation during hypoxia and hypercapnia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

EEG:

electroencephalograph

IOP:

intra-ocular pressure

Km :

Michaelis-Menten constant

LDF:

laser Doppler flowmetry

L-NAME:

Nω-nitro-L-arginine methyl ester

7-NI:

7-nitroindazole

NO:

nitric oxide, nitric monoxide

NOS:

nitric oxide synthase(neuronal Nnos, endothelial Enos, inducible iNOS)

ONH:

optic nerve head

References

  1. Goldstein IM, Ostwald P, Roth S. Nitric oxide: a review of its role in retinal function and disease. Vision Res 1996;36:2979–2994.

    Article  PubMed  CAS  Google Scholar 

  2. Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxia–ischemia. Biochim Biophys Acta 1999;1411:415–436.

    Article  PubMed  CAS  Google Scholar 

  3. Rengasamy A, Johns RA. Determination of Km for oxygen of nitric oxide synthase isoforms. Am Soc Pharmacol Exp Therapeu 1996;276:30–33.

    CAS  Google Scholar 

  4. Abu–Soud HM, Rousseau DL, Stuehr DJ. Nitric oxide binding to the heme of neuronal nitric–oxide synthase links its activity to changes in oxygen tension. J. Biol. Chem. 1996;271: 32515–32518.

    Article  PubMed  CAS  Google Scholar 

  5. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen. at cytochrome oxidase. FEBS Lett 1994;356:295–298.

    Article  PubMed  CAS  Google Scholar 

  6. Cleeter MJW, Cooper JM, Darley–Usmar VM, Moncada S, Schapira AH. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Lett 1994;345:50–54.

    Article  PubMed  CAS  Google Scholar 

  7. Boveris A, Costa LE, Cadenas E, Poderoso JJ. Regulation of mitochondrial respiration by adenosine diphosphate, oxygen, and nitric oxide. Meth Enzymol 1999;301: 188–198.

    Article  PubMed  CAS  Google Scholar 

  8. Kosaka H. Nitric oxide and hemoglobin interactions in the vasculature. Biochim Biophys Acta 1999;1411:370–377.

    Article  PubMed  CAS  Google Scholar 

  9. Clementi E, Brown GC, Foxwell N, Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci USA 1999;96:1559–1562.

    Article  PubMed  CAS  Google Scholar 

  10. Lahiri S, Buerk DG. Vascular and metabolic effects of nitric oxide synthase inhibition evaluated by tissue PO2 measurements in carotid body. In: Hudetz A, Bruley D, editors. Oxygen Transport to Tissue XX, Advances in Experimental Medicine and Biology. New York: Plenum Press, 1998;455–460.

    Google Scholar 

  11. Buerk DG, Lahiri S. Evidence that nitric oxide plays a role in O2 sensing from tissue NO and PO2 measurements in cat carotid body. In: Lahiri S, Forster R, Prabhakar N, editors. Oxygen Sensing: Molecule to Man. New York: Plenum Press, in press.

    Google Scholar 

  12. Buerk DG, Riva CE, Cranstoun SD. Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli. Microvas Res 1996;52:13–26.

    Article  CAS  Google Scholar 

  13. Buerk DG, Riva CE. Vasomotion and spontaneous low frequency oscillations in blood flow and nitric oxide in cat optic nerve head. Microvas Res 1998;55:103–112.

    Article  CAS  Google Scholar 

  14. Buerk DG, Atochin DN, Riva CE. Simultaneous tissue PO2, nitric oxide and laser Doppler blood flow measurements during neuronal activation of optic nerve. In: Hudetz A, Bruley D, editors. Oxygen Transport to Tissue XX, Advances in Experimental Medicine and Biology. New York: Plenum Press, 1998;159–164.

    Google Scholar 

  15. Detre JA, Ances BM, Takahashi K, Greenberg JH. Signal averaged laser Doppler measurements of activation–flow coupling in the rat forepaw somatosensory cortex. Brain Res 1998;796:91–98.

    Article  PubMed  CAS  Google Scholar 

  16. Buerk DG, Riva CE, Cranstoun SD. Frequency and luminance dependent blood flow and K+ ion changes during flicker stimuli in cat optic nerve head. Invest Ophthalmol Vis Sci 1995;36:2216–2227.

    PubMed  CAS  Google Scholar 

  17. Buerk DG, Ances BM, Detre JA, Greenberg JH. Increased tissue nitric oxide (NO) and cortical blood flow during functional activation of rat brain. Ann Biomed Eng. 1999;(abstract) in press.

    Google Scholar 

  18. Ghodadra R Buerk DG, Hao L, Mohadjer Y, Thakor NV. Nitric oxide changes in adult rat brain after transient global ischemia. Proc IEEE–EMB 1997;pp. 2152–2153.

    Google Scholar 

  19. Buerk DG, Ghodadra R, Hao L, Mohadjer Y, Thakor NV. Nitric oxide production and fluctuations in rat brain are transiently augmented after hypoxia. Ann Biomed Eng 1997;25(Suppl. 1):S58 (abstract).

    Google Scholar 

  20. Malonek D, Dimagl U, Lindauer U, Yamada K, Kanno I, Grinvald A. Vascular imprints of neuronal activity: Relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci 1997;94:14826–14831.

    Article  PubMed  CAS  Google Scholar 

  21. Cholet N, Seylez J, Lacombe P, Bonvento G. Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. J Cereb Blood Flow Metab 1997;17:1191–1201.

    Article  PubMed  CAS  Google Scholar 

  22. Adachi K, Takahashi S, Melzer P, Campos KL, Nelson T, Kennedy C, Sokoloff L. Increases in local cerebral blood flow associated with somatosensory activation are not mediated by NO. Am J Physiol 1994;267:H2155–H2162.

    PubMed  CAS  Google Scholar 

  23. Takahashi S, Cook M, Jehle J, Kennedy C, Sokoloff L. Preservation of autoregulatory cerebral responses to hypotension after inhibition of nitric oxide synthesis. Brain Res 1995;678:21–28.

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka K, Fukuuchi Y, Gomi S, Mihara B, Shirai T, Nogawa S, Nozaki H, Nagata E. Inhibition of nitric oxide synthesis impairs autoregulation of local cerebral blood flow in the rat. Neuroreport 1993;4:267–270.

    Article  PubMed  CAS  Google Scholar 

  25. Kobari M, Fukuuchi Y, Tomita M, Tanahashi N, Takeda H. Role of nitric oxide in regulation of cerebral microvascular tone and autoregulation of cerebral blood flow in cats. Brain Res 1994;667:255–262.

    Article  PubMed  CAS  Google Scholar 

  26. Okamoto H, Hudetz AG, Roman RJ, Bosnjak ZJ, Kampine JP. Neuronal NOS–derived NO plays permissive role in cerebral blood flow response to hypercapnia. Am J Physiol 1997;272:H559–H566.

    PubMed  CAS  Google Scholar 

  27. Hudetz AG, Shen H, Kampine JP. Nitric oxide from neuronal NOS plays critical role in cerebral capillary flow response to hypoxia. Am J Physiol 1998;274:H982–H989.

    PubMed  CAS  Google Scholar 

  28. Kelly PA, Buckley CH, Ritchie IM, O’Brien C. Possible role for nitric oxide releasing nerves in the regulation of ocular blood flow in the rat. Br J Ophthalmol 1998;82:1199–1202.

    Article  PubMed  CAS  Google Scholar 

  29. Kondo M, Wang L, Bill A. The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats. Acta Ophthalmol Scand 1997;75:232–235.

    Article  PubMed  CAS  Google Scholar 

  30. Schmetterer L, Findl O, Strenn K, Graselli U, Kastner J, Eichler HG, Woltz M. Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans. Am J Physiol 1997;272:R2005–R2012.

    Google Scholar 

  31. Riva CE, Buerk DG. Dynamic coupling of blood flow to function and metabolism in the optic nerve. Neuro–Ophthalmol 1998;20:45–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buerk, D.G., Atochin, D.N., Riva, C.E. (2003). Investigating the Role of Nitric Oxide in Regulating Blood Flow and Oxygen Delivery from in Vivo Electrochemical Measurements in Eye and Brain. In: Dunn, J.F., Swartz, H.M. (eds) Oxygen Transport to Tissue XXIV. Advances in Experimental Medicine and Biology, vol 530. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0075-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0075-9_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4912-9

  • Online ISBN: 978-1-4615-0075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics